Answer: 0.24g/ml
Explanation:
Given that:
Volume of water displaced = 23.5 ml
Mass of cork = 5.7 g
Density of the cork = ?
Recall that density is obtained by dividing the mass of a substance by the volume of water displaced.
i.e Density = Mass/volume
Density = 5.7g /23.5ml
Density = 0.24g/ml
Thus, the density of the piece of cork is 0.24g/ml
Answer:
Part a)
T = 0.52 s
Part b)

Part c)

Explanation:
As we know that the particle move from its maximum displacement to its mean position in t = 0.13 s
so total time period of the particle is given as

now we have
Part a)
T = time to complete one oscillation
so here it will move to and fro for one complete oscillation
so T = 0.52 s
Part b)
As we know that frequency and time period related to each other as



Part c)
As we know that
wavelength = 1.9 m
frequency = 1.92 Hz
so wave speed is given as



Answer: The infra red waves is located between microwave and visible light based on their WAVELENGTH and FREQUENCY of occurrence.
Explanation:
Electromagnetic waves are those waves that do not require or need a material medium for its propagation, but they are able to travel through a vacuum. They exhibit or show all properties associated or connected with light. They are undeflected in electric and magnetic fields. These electromagnetic waves are arranged in order of their FREQUENCY and WAVELENGTHS which is known as ELECTROMAGNETIC SPECTRUM.
FREQUENCY is defined as the number of cycles which the wave completes in one second and is measured in Hertz(Hz). While WAVELENGTH is defined as the distance between two successive crests or troughs of waves which is measured in meter (m).
The electromagnetic spectrum is made up of the following rays which is arranged from the biggest wavelengths to the smallest:
--> Radiowaves
--> microwave :
--> infrared rays:
--> visible light:
--> ultraviolet rays
--> x-rays and
--> Gamma rays.
According to the arrangement of the spectrum above, the microwave has a higher wavelength and frequency than the infrared rays, while the visible light has a lower wavelength and frequency than the infrared rays.
Gamma rays are the highest energy EM radiation and typically have energies greater than 100 keV, frequencies greater than 1019 Hz, and wavelengths less than 10 picometers.
When we hit the puck from tap the puck will move forward.
This is due to the impulse provided by us at the time of hit. Due to this impulse the puck will move forward and start moving in some direction.
As soon as puck move forward the force on it is zero as the weight of the puck is counterbalanced by the air stream force and there is no other force on it so puck will continue its motion till it will hit at some other point.
So here the motion of the puck will be uniform motion till it will collide with some other points.
So here the correct option will be given as
<em>moves with a constant speed until hitting the other end.</em>