Answer:
the tangential velocity of the student is 4.89 m/s.
Explanation:
Given;
the radius of the circular path, r = 3.5 m
duration of the motion, t = 4.5 s
let the student's tangential velocity = v
The tangential velocity of the student is calculated as follows;

Therefore, the tangential velocity of the student is 4.89 m/s.
Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
O W and X to get the money from you to the house to go to sleep lol i do it is a great idea for a little more time and the only one that
Answer:
it takes the car 4.362 seconds to cover the distance of 88.4 m.
Explanation:
The distance the car covers is given by the function
,
where
, and
, putting these in we get:

Now, when the car has moved to 88.4m,
, or

which is a quadratic equation with solutions

We take the first solution
, <em>since at that time the car is still moving right and decelerating</em>. The second solution
describes the situation where the car has stopped decelerating and is now moving leftwards because the decelerating is leftwards, <em>which is utterly wrong because we know that cars do not start moving backwards after the brakes have stopped them! </em>
Thus, it takes the car 4.362 seconds to cover the distance of 88.4 m.
Answer:
Oxygen and methane can react chemically with each other, so we would not see them together unless there are active sources for both. On Earth, biology is responsible for essentially all the oxygen and the majority of the methane in our atmosphere.