Answer: this many 4
Step-by-step explanation:
2(2x+7)+2(3x+8y)
=4x+14+6x+16y
=10x+16y+14
Answer:
0.2081 = 20.81% probability that at least one particle arrives in a particular one second period.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Over a long period of time, an average of 14 particles per minute occurs. Assume the arrival of particles at the counter follows a Poisson distribution. Find the probability that at least one particle arrives in a particular one second period.
Each minute has 60 seconds, so 
Either no particle arrives, or at least one does. The sum of the probabilities of these events is decimal 1. So

We want
. So
In which


0.2081 = 20.81% probability that at least one particle arrives in a particular one second period.
5(Less than sign) 2X(less than sign)3X+7
I think this is it?
Answer:
I think it is 10.
Step-by-step explanation:
For a polynomial of the form ax^2+bx+c rewrite the middle term as a sum of two terms whose product is a⋅c=5⋅4=20 and whose sum is b=12.
<u>Factor 12 out of 12x.</u>
5x^2+12(x)+4
<u>Rewrite 12 as 2 plus 10</u>
5x^2+(2+10)x+4
Apply the distributive property.
5x^2+2x+10x+4
Factor out the greatest common factor from each group.
Group the first two terms and the last two terms.
(5x^2+2x)+10x+4
Factor out the greatest common factor (GCF) from each group.
x(5x+2)+2(5x+2)
Factor the polynomial by factoring out the greatest common factor, 5x+25x+2.
(5x+2)(x+2)