The speed of the toy when it hits the ground is 2.97 m/s.
The given parameters;
- mass of the toy, m = 0.1 kg
- the maximum height reached by the, h = 0.45 m
The speed of the toy before it hits the ground will be maximum. Apply the principle of conservation of mechanical energy to determine the maximum speed of the toy.
P.E = K.E

Substitute the given values and solve the speed;

Thus, the speed of the toy when it hits the ground is 2.97 m/s.
Learn more here: brainly.com/question/7562874
Answer:21
Explanation:every body said
The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.
Answer:
1 . What happens when you drop the stone?
Depending on the weight from which the stone was dropped, the glass might well break
2 depending on the size and weight and shape on the stone the glass might well break
3 depending on the density on the stone the stone might when float on the water
Explanition :
GIVE ME BRAINLESS PLEASE !!