Answer:
0.49m
Explanation:
So you need to change the original equation for finding fields to find distance, and then just plug in the numbers
Which equals 0.49meters
Also it was right on Acellus :)
Hope this helps
RC circuit determines the capacitor's charging rate.
- In RC (resistive and capacitive) circuits, a capacitor's time constant is the number of seconds required to charge it to 63.2% of the input voltage.
- This duration is described by a single time constant. After two time constants, the capacitor will be charged to 86.5% of the input voltage.
- The RC time constant, also referred to as tau, is the time constant (in seconds) of an RC circuit and is obtained by multiplying the circuit resistance (in ohms) by the circuit capacitance (in farads), This transient reaction time T is stated in terms of = R x C, where R is the resistor value in ohms and C is the capacitor value in farads.
Learn more about RC circuits here brainly.com/question/13450553
#SPJ4.
Speed is constant. 50 miles = 1 hour. 600/50 = 12. 1hr(12) = 12 hours.
Answer:
= +3,394 103 m / s
Explanation:
We will solve this problem with the concept of the moment. Let's start by defining the system that is formed by the complete rocket before and after the explosions, bone with the two stages, for this system the moment is conserved.
The data they give is the mass of the first stage m1 = 2100 kg, the mass of the second stage m2 = 1160 kg and its final velocity v2f = +5940 m / s and the speed of the rocket before the explosion vo = +4300 m / s
The moment before the explosion
p₀ = (m₁ + m₂) v₀
After the explosion
pf = m₁
+ m₂ 
p₀ = [texpv_{f}[/tex]
(m₁ + m₂) v₀ = m₁
+ m₂
Let's calculate the final speed (v1f) of the first stage
= ((m₁ + m₂) v₀ - m₂
) / m₁
= ((2100 +1160) 4300 - 1160 5940) / 2100
= (14,018 10 6 - 6,890 106) / 2100
= 7,128 106/2100
= +3,394 103 m / s
come the same direction of the final stage, but more slowly
Answer:
the wind carries abrasive materials
Explanation:
such as sand and salt over time theses small particles slowly strip way at the land form sculpting it by eroding the softer layers first