Answer:
16.6 ms or 0.0166 s
Explanation:
If Q is the final charge, Q' is the initial charge, C the capacitance ,R is the resistance , t the time taken and τ the time constant,
[tex]Q = Q'( 1- e^{-t\div \tau })
τ = R C = (1.20×10³) (20×10⁻⁶) = 0.024 s
15 = 30 ( 1- e^{-t\div \ 0.024 })
( 1- e^{-t\div \ 0.024 }) = 15 ÷ 30
⇒ - e^{-t\div \ 0.024 }) = 0.5 -1
⇒ e^{-t\div \ 0.024 }) = 0.5
Taking logarithm to the base e on both sides of this equation,
⇒ t = 0.0166 seconds = 16.6 milli seconds
Answer:




Explanation:
The electrical reactance is defined as:

Where:

So, replacing the data provided by the problem:

Now, the impedance can be calculated as:

Where:

Replacing the data:

In order to find the magnitude of the impedance we can use the next equation:

We can use Ohm's law to find the current:

Therefore the current is:

And its magnitude is:

Finally the phase angle of the current is given by:

Answer:
Comets
Explanation:
Comets are planetary celestial bodies consisting of ice and dust, sometimes rocky particles formed in the region of the solar system. Long-period comets propagate towards the Sun by gravitational perturbations caused by passing stars. Some comets usually hyberbolic comets, move through the inner Solar System prior to entering the interstellar region. Short period comet lies beyond the orbit of the Neptune.
The Jovian planets include Jupiter, Saturn, Uranus, and Neptune.
Therefore, leftovers of comets (planetesimal bodies) formed in the region of the solar system that are now occupied by the Jovian planets is due to the dusty particles associated with the comets.
Kinetic energy = momentum^2 / 2 x mass
Mass = (momentum^2/ Kinetic energy) / 2
Mass = (25^2 / 275) / 2
Mass = 1.136 kg.
momentum = mass x velocity
velocity = mass / momentum
velocity = 1.136 / 25
velocity = 0.04544 m/s