1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
3 years ago
12

NO LINKS PLEASEEEEEEE

Mathematics
2 answers:
GarryVolchara [31]3 years ago
7 0
It will be B.) 6 inches

21/3.5 = 6

Hope this helps!!
Sedbober [7]3 years ago
6 0
The answer would be 6. 21/3.5=6
You might be interested in
(X+7)(x+7)=0 find the solution set
mafiozo [28]

Answer:

x = -7

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y
\\
\\ \indent xdy = \left ( y^2 - y \right )dx
\\
\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}
\\
\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} 
\\
\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}
\\
\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} 
\\
\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B
\\
\\ \indent \Rightarrow (A+B)y - B = 0y + 1
\\
\\ \indent \Rightarrow \begin{cases}
 A + B = 0
& \text{(3)}\\-B = 1
 & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} 
\\
\\ \indent \indent \indent \indent = \ln (y-1) - \ln y
\\
\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1
\\
\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2
\\
\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x
\\
\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}
\\
\\ \indent  1 - \frac{1}{y} = Cx
\\
\\ \indent \frac{1}{y} = 1 - Cx
\\
\\ \indent \boxed{y = \frac{1}{1 - Cx}}
       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1



Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}
\\
\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 16 = \frac{1}{1 - C(16)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 16C}
\\
\\ \indent 16(1 - 16C) = 1
\\ \indent 16 - 256C = 1
\\ \indent - 256C = -15
\\ \indent \boxed{C = \frac{15}{256}}




By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}
\\
\\ \indent y = \frac{1}{1 - \frac{15}{256}x} 
\\ 
\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}
\\
\\
\\ \indent \boxed{y = \frac{256}{256 - 15x}}





This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} 
\\ 
\\ \indent 16 = \frac{1}{1 - C(4)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 4C} 
\\ 
\\ \indent 16(1 - 4C) = 1 
\\ \indent 16 - 64C = 1 
\\ \indent - 64C = -15 
\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
The data in the table is describing the heights of the Boston Celtics.
tester [92]

Answer: 4.5%

Step-by-step explanation:

Percentage will be calculated as:

No of players with height below 74/ total number of players x 100

From the question, Only one player has height of below 74

Total number of heights recorded is from 22 players

% = 1/22 × 100

0.04545 x 100

= 4.5%

I hope this helps.

5 0
3 years ago
Need help with this algebra problem 15 points will give brainiest if right
MArishka [77]

Answer:

F

U

C

K

U

YOU MOTHER

F

U

C

K

E

R

3 0
3 years ago
Read 2 more answers
Use place value to find the product for 5 × 70 = 5 × ?tens
aev [14]
It should be 7 tens because both side should be equal.
3 0
3 years ago
Read 2 more answers
Other questions:
  • 0.09 is 10 times as much as ?
    6·2 answers
  • Which equation represents a line that has a slope of -1/2 and passes through point (4, –5)?
    9·2 answers
  • Your father will be going to your grandparents house for dinner.He drives 40 minutws at a constant soeed of 30 miles per houer.H
    12·1 answer
  • Which fraction is equal to 0.8? Express your answer in simplest form. A. 3/5 B. 4/5 C. 1/8 D. 5/8
    5·1 answer
  • What represents the inverse of the function f(x)=4x
    6·1 answer
  • Which graph shows an odd function?
    14·2 answers
  • LORD SOMEONE please help me!! ASAP I will give brainiest! Fr
    14·1 answer
  • Please please I beg you help me.
    11·1 answer
  • Complete the pattern 1,2,4,8___and __and __
    14·2 answers
  • It takes Joey 1<br> hour to run<br> 1 1/2 miles.<br> How many miles does Joey run in 1 hour?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!