Answer:
B. 67.6/Hg(200.5)= .337. 10.8/S(32.1)= .336. 21.6/O(16)= 1.35--> .337/.336= 1 .336/.336= 1 1.35/.336= 4. Formula= HgSO4
Explanation:
Answer:
Over time the metal will cool and the water will heat up. Eventually the two objects will have the same temperature
Explanation:
Answer:
The correct answer is;
5. They were packaged at a higher pressure on the ground, thus causing the gas inside the packages to expand in the sky where the jet is at a lower pressure.
Explanation:
According to Boyle's law, the pressure of a given mass of gas is inversely proportional to it volume at constant temperature
P₁·V₁ = P₂·V₂
At the factories, the peanuts are packaged at atmospheric conditions whereby P₁ = 1 atm, however, the pressure of the air in the atmosphere decreases with altitude as such the pressure in the airplane jet is about a fraction of hat on the ground by about a factor of 0.7.
Therefore P₂ = 0.7 atm and we have
V₂ = P₁·V₁/P₂ = 1 atm×V₁/0.7 atm = 1.43·V₁
The volume increases at high altitudes
Answer: The correct formula is 
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here magnesium is having an oxidation state of +2 called as
cation and bromine
is an anion with oxidation state of -1. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
.
The cations and anions being oppositely charged attract each other through strong coloumbic forces and form an ionic bond.
5.451 X 10³ kg of sodium carbonate must be added to neutralize 5.04×103 kg of sulfuric acid solution.
<u>Explanation</u>:
- Sodium carbonate is used to neutralized sulfuric acid, H₂SO₄. Sodium carbonate is the salt of a strong base (NaOH) and weak acid (H₂CO₃). The balanced chemical reaction for neutralization is as follows:
Na₂CO₃ + H₂SO₄ ----> Na₂SO₄ + H₂CO₃
- From a balanced chemical equation, it is clear that one mole of Na₂CO₃ is required to neutralize one mole of H₂SO₄.
- Molar mass of Na₂CO₃= 106 g/mol = 0.106 kg/mol and Molar mass of H₂SO₄= 98 g/mol = 0.098 kg/mol.
- To neutralize 0.098 kg of H₂SO₄ amount of Na₂CO₃ required is 0.106 kg, so, To neutralize 5.04×10³ kg of H₂SO₄, Na₂CO₃ required is = 5.451 X 10³ kg.