Answer:
- Weight 333.3 grams of iodine.
- Measure 500 mL of water.
- Vigorously mix the resulting solution.
Explanation:
Hello,
In this case, since 500 mL of a 40% (w/v) aqueous solution iodine is required, we can compute the required mass of iodine by defining the given mass-volume percent:

In such a way, we need to find mass of iodine, which is computed as:

Thereby, the procedure will be:
- Weight 333.3 grams of iodine.
- Measure 500 mL of water.
- Vigorously mix the resulting solution.
Best regards.