Answer:
c cells
Explanation:
learned that in 7th grade
Answer:
2.60 moles of A remaining.
Explanation:
According to Le Chatelier's principle, the equilibrium would shift if the volume, concentration, pressure, or temperature changes.
In this question, we were told that the volume doubles, that implies that we would have to double the molarity of B/ C (since B=C.)
However, it is obvious and clear from the given equation of the reaction that A is solid in it's activity = 1. Hence, it is then ignored.
So doubling B would be 1.30 M × 2 = 2.60 M
i.e 2.60 M moles of A was consumed.
Now; the number of moles of A remaining is 5.20 - 2.60 = 2.60 moles of A remaining.
Answer:
Mass of Ca(OH)₂ required = 0.09 g
Explanation:
Given data:
Volume of HNO₃ = 25 mL (25/1000 = 0.025 L)
Molarity of HNO₃ = 0.100 M
Mass of Ca(OH)₂ required = ?
Solution:
Chemical equation;
Ca(OH)₂ + 2HNO₃ → Ca(NO)₃ + 2H₂O
Number of moles of HNO₃:
Molarity = number of moles / volume in L
0.100 M = number of moles / 0.025 L
Number of moles = 0.100 M ×0.025 L
Number of moles = 0.0025 mol
Now we will compare the moles of Ca(OH)₂ with HNO₃ from balance chemical equation.
HNO₃ : Ca(OH)₂
2 : 1
0.0025 : 1/2×0.0025 = 0.00125
Mass of Ca(OH)₂:
Mass = number of moles × molar mass
Mass = 0.00125 mol × 74.1 g/mol
Mass = 0.09 g
D Excretory systems regulate the chemical composition of body fluids by removing metabolic wastes and retaining the proper amounts of water, salts, and nutrients. Components of this system in vertebrates include the kidneys, liver, lungs, and skin.