The zeroes of the polynomial functions are as follows:
- For the polynomial, f(x) = 2x(x - 3)(2 - x), the zeroes are 3, 2
- For the polynomial, f(x) = 2(x - 3)²(x + 3)(x + 1), the zeroes are 3, - 3, and -1
- For the polynomial, f(x) = x³(x + 2)(x - 1), the zeroes are -2, and 1
<h3>What are the zeroes of a polynomial?</h3>
The zeroes of a polynomial are the vales of the variable which makes the value of the polynomial to be zero.
The polynomials are given as follows:
f(x) = 2x(x - 3)(2 - x)
f(x) = 2(x - 3)²(x + 3)(x + 1)
f(x) = x³(x + 2)(x - 1)
For the polynomial, f(x) = 2x(x - 3)(2 - x), the zeroes are 3, 2
For the polynomial, f(x) = 2(x - 3)²(x + 3)(x + 1), the zeroes are 3, - 3, and -1
For the polynomial, f(x) = x³(x + 2)(x - 1), the zeroes are -2, and 1
In conclusion, the zeroes of a polynomial will make the value of the polynomial function to be zero.
Learn more about polynomials at: brainly.com/question/2833285
#SPJ1
F(x) = 5 + 2x where x is the number of times he walks the neighbours dog
y-intercept is at y=5 and slope = 2
g(x) :- As x increases by 4 g(x) decreases by -8 so the slope is -8/4 = -2
when x = 0, g(x) = the y intercept is at -1 + (-8/2) = - 5
so equation of g(x) is g(x) = -5 -2x
h(x):- the slope is (3 - 5) / (1 - 0) [ difference in y values / diff in x values]
slope = -2
so we have h(x) = -2x + c where c = the y-intercept
when x = 0 h(x) = 5
so c = 5
h(x) = 5 - 2x
Now j(x)= 2x - 5 - slope is 2 and y intercept = -5
Answer:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.
Step-by-step explanation:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.