Sequential cleavage from the non-reducing terminals of glucose molecules is required for both glycogen degradation and polysaccharides hydrolysis.
Why non-reducing end is selected for digestion?
A polysaccharide's non-reducing end is the one where an anomeric carbon participates in the glycosidic connection. The elimination of carbohydrate remnants one at a time out from the non-reducing terminal occurs during glycogenolysis and polysaccharides hydrolysis.
- For example, several enzymes are involved in glycogenolysis in the liver and muscle.
- An example of such an enzyme is glycogen phosphorylase, which catalyzes the successive dissociation of the alpha 1->4 glycosidic bond that connects two glucose molecules at a non-reducing terminal of glycogen. The last glucose residue is eliminated as alpha-D-glucose 1-phosphate.
That is why non-reducing end of glucose is chosen for digestion or breakdown of the carbohydrate polymer.
Learn more about non-reducing here:
brainly.com/question/1832596
#SPJ4
Answer:
Explanation:
The cell membrane separates the cell from the outer environment. The extracellular fluid contains the sodium ions (Na+), chloride ions (Cl-), while intracellular fluid contains potassium (K +) and negative anions.
The potential difference arises when the membrane is selectively permeable to some ions. The resting potential is -70mV.
When the neurons get excited, the sodium ions start to enter by sodium channels.
Now there are more positive ions inside the cell membrane. It disturbs the resting potential i.e. -70mV. This stage is known as depolarization.
When the inside environment of the cell is more positively charged, the potassium ions start to move out of the cell. It goes out by the voltage-gated channels. Thus resting stage is maintained and it is known as repolarization.
But the initial stability of the cell membrane has to be maintained. To restore the resting stage, the sodium ions start to move out of the membrane and potassium ions enter into the cells again. This is an active transport and has done by the Na+ - K+ pump. Here 3 sodium ions move out and 2 potassium ions pumped into the cell through the plasma membrane.
Thus the resting potential regains. The potassium ions come back into the cells against the concentration gradient and ATP provides the energy for this phenomena.
Answer:
-kills organisms such as fish, birds, and crabs
-disruption of food chains caused by the death of organisms
-destruction of ecosystems
TT and Tt are possible genotypes of a tall pea plant as the resulting phenotype of both possible genotypes result in a tall pea plant.