Answer:

Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ {H}^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7BH%7D%5E%7B%2B%7D%20%5D)
Since we are finding the H+ ions we find the antilog of the pH
So we have

We have the final answer as

Hope this helps you
Because gravity is trying to pull it down not up and when it's going down it's going with gravity not against it.
is night i will answer you in the morning
Answer:
68.6 °C
Explanation:
From conservation of energy, the heat lost by acetone, Q = heat gained by aluminum, Q'
Q = Q'
Q = mL where Q = latent heat of vaporization of acetone, m = mass of acetone = 3.33 g and L = specific latent heat of vaporization of acetone = 518 J/g
Q' = m'c(θ₂ - θ₁) where m' = mass of aluminum = 44.0 g, c = specific heat capacity of aluminum = 0.9 J/g°C, θ₁ = initial temperature of aluminum = 25°C and θ₂ = final temperature of aluminum = unknown
So, mL = m'c(θ₂ - θ₁)
θ₂ - θ₁ = mL/m'c
θ₂ = mL/m'c + θ₁
substituting the values of the variables into the equation, we have
θ₂ = 3.33 g × 518 J/g/(44.0 g × 0.9 J/g°C) + 25 °C
θ₂ = 1724.94 J/(39.6 J/°C) + 25 °C
θ₂ = 43.56 °C + 25 °C
θ₂ = 68.56 °C
θ₂ ≅ 68.6 °C
So, the final temperature (in °C) of the metal block is 68.6 °C.