Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer: Mass of
produced in this reaction was 6.56 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

Mass or reactants = Mass of
+ mass of
= 16.00 + 64.80 = 80.80 g
Mass of products = mass of aqueous solution + mass of
+ = 74.24 + x g
Mass or reactants = Mass of products
80.80 g = 74.24 + x g
x = 6.56 g
Thus mass of
produced in this reaction was 6.56 grams
Answer:
From molar mass=total RAM of each individual element
78.8=(16+1)×3+M
78.8-51=M
27.8g/mol=M
95 percent of species known are invertebrates