Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.
The resistance of the thermometer at room temperature is 15.04 ohms.
<h3 />
<h3>What is a resistance thermometer?</h3>
A resistance thermometer is a type of thermometer that measures temperature through a change in resistance.
To calculate the resistance of the thermometer at room temperature, we use the formula below.
Formula:
- 100/27 = 2/(x-14.5)..............Eqquation 1
Where:
- x = Resistance of the thermometer at room temperature
Make x the subject of the equation
- x = [(27×2)/100]+14.5
- x = (54/100)+14.5
- x = 0.54+14.5
- x = 15.04 ohms.
Hence, The resistance of the thermometer at room temperature is 15.04 ohms.
Learn more about thermometers here: brainly.com/question/1531442
Your center or gravity helps your balance because either it will help younot fall or it wont some people are just clusmy
Answer:
The size of the force that pushes the wall is 12,250 N.
Explanation:
Given;
mass of the wrecking ball, m = 1500 kg
speed of the wrecking ball, v = 3.5 m/s
distance the ball moved the wall, d = 75 cm = 0.75 m
Apply the principle of work-energy theorem;
Kinetic energy of the wrecking ball = work done by the ball on the wall
¹/₂mv² = F x d
where;
F is the size of the force that pushes the wall
¹/₂mv² = F x d
¹/₂ x 1500 x 3.5² = F x 0.75
9187.5 = 0.75F
F = 9187.5 / 0.75
F = 12,250 N
Therefore, the size of the force that pushes the wall is 12,250 N.