Gravitational Potential Energy (GPE) before fall = Kinetic energy on impact
GPE = mgh
GPE = 5kg x 9.8m/s^2 x 10m
GPE = 490 J
Kinetic Energy = 490 J
(This is assuming that gravitation field strength (g) is 9.8m/s^2, sometimes you may round this to 10m/s^2, therefore making the final result:
Kinetic energy = 500 J)
Answer:
A) Sound Energy
Explanation:
Electrical and nuclear energy are examples of potential energy
Answer:
117.72 N
Explanation:
The given parameters are;
The mass m₁ = 2.0 × 10³ kg
The mass m₂ = 4.4 × 10² kg
The mass of the man, m₃ = 6.0 × 10 kg
The condition of the interaction of the surfaces = Frictionless surfaces
The
The tension in the string = The downward force = The weight of (m₂ + m₃) = (m₂ + m₃) × g
Let <em>a</em> represent the acceleration of the connected masses due to the weight of m₂, and m₃, we have;
(m₁ + m₂ + m₃) × a = (m₂ + m₃) × g
∴ a = (m₂ + m₃) × g/(m₁ + m₂ + m₃)
Which gives;
a = (4.4 × 10²+ 6.0 × 10) × 9.81/(2.0 × 10³+ 4.4 × 10²+ 6.0 × 10) = 1.962
The downward acceleration, a = 1.962 m/s²
The apparent weight of the man = The mass of the man, m₃ × The acceleration, <em>a</em>
∴ The apparent weight of the man = 6.0×10 kg ×1.962 m/s² = 117.72 N
Answer:
× 
Explanation:
Knowing that, the volume of the sphere is given by, 
Thus, the fractional change in volume is given by,
× 
Pressure at the bottom of the sea is,
Δp =pgh =
×
×
pa.
Knowing that,
Bulk modulus: 


Answer =
× 
[RevyBreeze]