<span>E=hν</span> where E is the energy of a single photon, and ν is the frequency of a single photon. We recall that a photon traveling at the speed of light c and a frequency ν will have a wavelength λ given by <span>λ=<span>cν</span></span>λ will have an energy given by <span>E=<span><span>hc</span>λ</span></span><span>λ=657</span> nm. This will be <span>E=<span><span>(6.626×<span>10<span>−34</span></span>)(2.998×<span>108</span>)</span><span>(657×<span>10<span>−9</span></span>)</span></span>=3.0235×<span>10<span>−19</span></span>J</span>
So we now know the energy of one photon of wavelength 657 nm. To find out how many photons are in a laser pulse of 0.363 Joules, we simply divide the pulse energy by the photon energy or <span>N=<span><span>E<span>pulse </span></span><span>E<span>photon</span></span></span>=<span>0.363<span>3.0235×<span>10<span>−19</span></span></span></span>=1.2×<span>1018</span></span>So there would be <span>1.2×<span>1018</span></span><span> photons of wavelength 657 nm in a pulse of laser light of energy 0.363 Joules.</span>
The ring shape of the Cartwheel Galaxy is due to collisions with another galaxy.
<h3>What causes the ring shape of the Cartwheel Galaxy?</h3>
The unusual shape of the Cartwheel Galaxy is due to a collision with a smaller galaxy. The recent star burst has lighted up the Cartwheel rim which has a diameter larger than that of the Milky Way galaxy in which our planet exists. The Cartwheel Galaxy is a lenticular ring galaxy which is about 500 million light-years away. This galaxy was discovered by Fritz Zwicky in the year 1941.
So we can conclude that the ring shape of the Cartwheel Galaxy is due to collisions with another galaxy.
Learn more about galaxy here: brainly.com/question/13956361
#SPJ1
If one or more of the following occur: Gas formation, precipitate formation, color change, temperature change, or odor
2K + Br2 ===> 2KBr
It's very ionic. The transfer of 2 electrons from K to Br2 is nearly as complete as it can be.
Answer:

Explanation:
Hello,
In this case, since the molarity is computed by:

Whereas the solute is the hydrochloric acid, we compute the corresponding moles with its molar mass (36.45 g/mol):

Next, since the solution contains both HCl and water, we compute the volume in liters by using its density:

Therefore, the molarity turns out:

Regards.