Let u = initial vertical velocity.
Assume that
g = 9.81 m/s²,
Wind resistance is ignored.
When t = 0.220 s, the height is h = 0.537 m. Therefore
0.537 m = (u m/s)*(0.220 s) - (1/2)*(9.81 m/s²)*(0.220 s)²
0.537 = 0.22u - 0.2372
u = 3.519 m/s
The upward velocity after 0.220 s is
v = 3.519 - 9.81*0.22 = 1.363 m/s
At maximum height, the upward velocity is zero. The maximum height, H, is given by
(3.519 m/s)² - 2*(9.81 m/s²)*(H m) = 0
12.3834 - 19.6H = 0
H = 0.632 m
It goes higher by 0.632 - 0.537 = 0.095 m
Answers:
(a) The initial speed is 3.519 m/s.
(b) The speed at 0.537 m height is 1.363 m/s.
(c) It goes higher by 0.095 m.
Explanation:
because the boy has larger surface area due to which he offers the larger air resistance which decreases the acceleration so, he will fall towards the earth's surface approximately with constant velocity.
Answer:
B) a leaf blown from a tree by the wind
Answer:0.114 C
Explanation:
Given
Total 4.7 C is distributed in two spheres
Let
and
be the charges such that

and Force between charge particles is given by



put the value of 




thus 
We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.