The first step for solving this expression is to know that since both of the expression are equal to y,, we must set them each to each other to form an equation in x. This will look like the following:
-3x + 7 = -3x - 6
Now cancel equal terms on both sides of the equation.
7 = -6
This tells us that the statement is false for any value of x and y,, so our answer is (x,y) ∈ ∅,, or no solution (option D).
Let me know if you have any further questions.
:)
The vertex is the high point of the curve, (2, 1). The vertex form of the equation for a parabola is
.. y = a*(x -h)^2 +k . . . . . . . for vertex = (h, k)
Using the vertex coordinates we read from the graph, the equation is
.. y = a*(x -2)^2 +1
We need to find the value of "a". We can do that by using any (x, y) value that we know (other than the vertex), for example (1, 0).
.. 0 = a*(1 -2)^2 +1
.. 0 = a*1 +1
.. -1 = a
Now we know the equation is
.. y = -(x -2)^2 +1
_____
If we like, we can expand it to
.. y = -(x^2 -4x +4) +1
.. y = -x^2 +4x -3
=========
An alternative approach would be to make use of the zeros. You can read the x-intercepts from the graph as x=1 and x=3. Then you can write the equation as
.. y = a*(x -1)*(x -3)
Once again, you need to find the value of "a" using some other point on the graph. The vertex (x, y) = (2, 1) is one such point. Subsituting those values, we get
.. 1 = a*(2 -1)*(2 -3) = a*1*-1 = -a
.. -1 = a
Then the equation of the graph can be written as
.. y = -(x -1)(x -3)
In expanded form, this is
.. y = -(x^2 -4x +3)
.. y = -x^2 +4x -3 . . . . . . same as above
No it’s not because they don’t go into the same multiples
<span>For an independent-measures anova comparing four treatment conditions, dfbetween = 3.
TRUE.
The dfbetween is given by the number of treatments minus 1.
</span>
Given data:
The first point given iis (a, b)=(-6,2).
The second point given is (c,d)=(0, -6).
The expression for the slope is,
m=(d-b)/(c-a)
Substitute the given points in the above expression.
m=(-6-2)/(0-(-6))
=(-8)/(6)
=-4/3
Thus, the slope of the line is -4/3, so (C) option is correct.