Answer:
a ) 2.368 rad/s
b) 3.617 rad/s
Explanation:
the minimum angular velocity that Prof. Stefanovic needs to spin the bucket for the water not to fall out can be determined by applying force equation in a circular path
i.e
------ equation (1)
where;


Also

since; that is the initial minimum angular velocity to keep the water in the bucket
Now; we can rewrite our equation as :

So; Given that:
The rope that is attached to the bucket is lm long and his arm is 75 cm long.
we have our radius r = 1 m + 75 cm
= ( 1 + 0.75 ) m
= 1.75 m
g = acceleration due to gravity = 9.81 m/s²
Replacing our values into equation (2) ; we have:

b) if he detaches the rope and spins the bucket by holding it with his hand ; then the radius = 0.75 m
∴

Answer:
4 hydrogen atoms can form chemical bond with 1 carbon atom.
Explanation:
CH4. methane
The change in potential energy of an object is given by

where
m is the mass of the object
g is the gravitational acceleration

is the increase in altitude of the object
In our problem,

is the mass of the book,

and

is the increase in altitude of the book, so its variation of potential energy is
Answer:
The answer is B 5.0 Volts
Explanation:
I'm using the formula from Ohm's Law like you mentioned for my answer.
V=IR
V=0.050 amps x 100 ohms of resistance
With this you'll have your answer!