Answer:
decreases.
Explanation:
When the aircraft is flies from the warm air into the colder air then its speed will be decreases.
as we know that
we know mach number is constant
so that here Mach number M is expressed as
M =
.............................1
here u is Local flow velocity with respect to the boundarie and v is the speed of sound in the medium
If the aircraft flies from hot air to cold air, the speed of sound in the medium will decrease. But the Mach number remains constant. Therefore, the local flow velocity relative to the boundaries also decreases.
Answer:
Explanation:
Water waves are generally a transverse wave which do not cause permanent displacement of molecules of the medium. Transverse waves are waves in which the direction of propagation of the wave is perpendicular to the direction of vibration of the particles of the medium.
As the wave propagates from one point to another on the surface of water transferring energy, a molecule of water on its surface vibrates upwards and downwards. Its motion is perpendicular to the direction of propagation of the wave. After the vibration, it comes back to its initial position.
If Resistors are in series= The equivalent is the sum.
E.g R1 and R2 in series, R = R1 + R2.
If in Parallel, equivalent is Product/sum.
E.g If R1 and R2 in parallel, R = (R1*R2)/(R1+R2)
1.) 60 is parallel with 40 and both are then in series with 20.
60//40 = (60*40)/(60+40) = 2400/100 = 24
Now the 24 is in series with the 20
R = 24 + 20 = 44 ohms.
2.) 80 is in series with 40 and both are then in parallel with 40.
Solving the series, R = 80 + 40 =120.
Parallel: 120//40 = (120*40)/(120+40) = 4800/160 = 30
Equivalent Resistance = 30 ohms.
3.) 100 is in parallel with 100 and both are then in series with the parallel of 50 and 50.
The 1st parallel = (100*100)/(100+100) = 10000/200 = 50
The 2nd parallel = (50*50)/(50+50) = 2500/100 = 25.
Solving the series = 50 + 25 =75 ohms.
Cheers.
Given:
m₁ = 1540 g, mass of iron horseshoe
T₁ = 1445 °C, initial temperature of horseshoe
c₁ = 0.4494 J/(g-°C), specific heat
m₂ = 4280 g, mass of water
T₂ = 23.1 C, initial temperature of water
c₂ = 4.18 J/(g-°C), specific heat of water
L = 947,000 J heat absorbed by the water.
Let the final temperature be T °C.
For energy balance,
m₁c₁(T₁ - T) = m₂c₂(T - T₂) + L
(1540 g)*(0.4494 J/(g-C))*(1445-T C) = (4280 g)*(4.18 J/(g-C))*(T-23.1 C) + 947000 J
692.076(1445 - T) = 17890(T - 23.1) + 947000
10⁶ - 692.076T = 17890T - 413259 + 947000
466259 = 18582.076T
T = 25.09 °C
Answer: 25.1 °C