Answer:
11.7 m/s
Explanation:
To find its speed, we first find the acceleration of the center of mass of a rolling object is given by
a = gsinθ/(1 + I/MR²) where θ = angle of slope = 4, I = moment of inertia of basketball = 2/3MR²
a = 9.8 m/s²sin4(1 + 2/3MR²/MR²)
= 9.8 m/s²sin4(1 + 2/3)
= 9.8 m/s²sin4 × (5/3)
= 1.14 m/s²
To find its speed v after rolling for 60 m, we use
v² = u² + 2as where u = initial speed = 0 (since it starts from rest), s = 60 m
v = √(u² + 2as) = √(0² + 2 × 1.14 m/s × 60 m) = √136.8 = 11.7 m/s
Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law
Answer:
The angle of incidence when the reflected ray is perpendicular to the incident ray = 45°
Explanation:
According to Snell's Law,
n₁ sin θ₁ = n₂ sin θ₂
When the angle between the incident ray and reflected ray is 90°, the angle of incidence is θ₁ and the angle of reflection, θ₂ = 90° - θ₁ and the index of refraction in the Snell's Law for both media would be the same, n₁ = n₂ = n
n sin θ₁ = n sin (90° - θ₁)
Note that from trigonometric relations,
Sin (90° - θ₁) = cos θ₁
n sin θ₁ = n cos θ₁
(sin θ₁)/(cos θ₁) = 1
tan θ₁ = 1
θ₁ = arctan 1 = 45°
Hope this Helps!!!
Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m