Answer: “We live on a hunk of rock and metal that circles a humdrum star that is one of 400 billion other stars that make up the Milky Way Galaxy which is one of billions of other galaxies which make up a universe which may be one of a very large number, perhaps an infinite number, of other universes. That is a perspective on human life and our culture that is well worth pondering.”
― Carl Saga
Is this it mate?
Answer:
Ionic Bonding: The formation of an Ionic bond is the result of the transfer of one or more electrons from a metal onto a non-metal.
Covalent Bonding: Bonding between non-metals consists of two electrons shared between two atoms.
Explanation:
I’d say market and distribution would be the next step
The given question is incomplete. The complete question is:What is the relative atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances.
Isotope mass amu Relative abundance
1 77.9 14.4
2 81.9 14.3
3 85.9 71.3
Express your answer to three significant figures and include the appropriate units.
Answer: 84.2 amu
Explanation:
Mass of isotope 1 = 77.9
% abundance of isotope 1 = 14.4% = 
Mass of isotope 2 = 81.9
% abundance of isotope 2 = 14.3% = 
Mass of isotope 3 = 85.9
% abundance of isotope 2 = 71.3% = 
Formula used for average atomic mass of an element :

![A=\sum[(77.9\times 0.144)+(81.9\times 0.143)+(85.9\times 0.713)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2877.9%5Ctimes%200.144%29%2B%2881.9%5Ctimes%200.143%29%2B%2885.9%5Ctimes%200.713%29%5D)

Therefore, the average atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances is 84.2 amu
The equilibrium expression for the reaction; C(s) + O₂(g) ------->CO₂(g) is [CO2]/[C] [O2] option C.
<h3>What is the equilibrium expression?</h3>
The equilibrium expression shows how much of the reactants are converted into products. If the equilibrium constant is large and positive, most of the reactants have been converted into products.
Thus, the equilibrium expression for the reaction; C(s) + O₂(g) ------->CO₂(g) is [CO2]/[C] [O2] option C.
Learn more about equilibrium constant:brainly.com/question/10038290
#SPJ1