Answer:
The water will evaporate and fly out of the bucket; the process will not stop until there is enough water vapor in the atmosphere that the vapor pressure stops the water from boiling further.
Explanation:
Answer:
1.73 Molar
Explanation:
The formula is Molarity=moles of solute/liters of solution, which can be written in whatever way you prefer, and examples include: M=N/V or M=mol/L.
M=N/V
M= 
Divide 5.63 by 3.25. When you calculate this, you get 1.73, therefore your answer is 1.73 molar.
The unit 'mW' means milliwatts. It is a unit of work. There are 1,000 milliwatts in a 1 Watt of work. In 4 hours, there are 14,400 seconds.
Work= Energy/time
17 mW * 1 W/1000 mW = Energy/(14,400 seconds)
Solving for energy,
Energy = 244.8 J
Energy/photon = 244.8 J/(6.04×10²⁰) = 4.053×10⁻¹⁹ J/photon
Using the Planck's equation:
E = hc/λ
where h = 6.626×10⁻³⁴ m²·kg/s, c = 3,00,000,000 m/s and λ is the wavelength
4.053×10⁻¹⁹ J/photon = (6.626×10⁻³⁴ m²·kg/s)(3,00,000,000 m/s)/λ
λ = 4.9×10⁻⁷ m or 49 micrometers
Answer:
K = 3.37
Explanation:
2 NH₃(g) → N₂(g) + 3H₂(g)
Initially we have 4 mol of ammonia, and in equilibrium we have 2 moles, so we have to think, that 2 moles have been reacted (4-2).
2 NH₃(g) → N₂(g) + 3H₂(g)
Initally 4moles - -
React 2moles 2m + 3m
Eq 2 moles 2m 3m
We had produced 2 moles of nitrogen and 3 mol of H₂ (ratio is 2:3)
The expression for K is: ( [H₂]³ . [N₂] ) / [NH₃]²
We have to divide the concentration /2L, cause we need MOLARITY to calculate K (mol/L)
K = ( (2m/2L) . (3m/2L)³ ) / (2m/2L)²
K = 27/8 / 1 → 3.37