The answer is C. 146g because you add all of the masses of the individual elements and then mulyiply by 1.72 to get your answer.
Answer:
A:temperature
Explanation:
The temperature cannot be determined by looking at the spectra of the star due to lack of the equipment for its measurement. <em>On the other-hand, the remaining statements like the distance from earth, movement towards or away from earth can be determined.</em>
Given the data from the question, the mass of arsenic that contains 1.23×10²⁰ atoms is 0.0153 g
<h3>Avogadro's hypothesis </h3>
6.02×10²³ atoms = 1 mole of arsenic
But
1 mole of arsenic = 75 g
Thus, we can say that:
6.02×10²³ atoms = 75 g of arsenic
<h3>How to determine the mass that contains 1.23×10²⁰ atoms</h3>
6.02×10²³ atoms = 75 g of arsenic
Therefore,
1.23×10²⁰ atoms = (1.23×10²⁰ × 75) / 6.02×10²³ atoms)
1.23×10²⁰ atoms = 0.0153 g of arsenic
Thus, 1.23×10²⁰ atoms is present in 0.0153 g of arsenic
Learn more about Avogadro's number:
brainly.com/question/26141731
Carbohydrates are ring shaped.
Answer:
D, E and F
Explanation:
About tetrachloro cobalt complexes, the following facts have been observed
- Color of the tetrachloro cobalt complexes is blue.
- They do not decompose on heating that means synthesis of tetra chloro is endothermic.
About hexa aqua cobalt complexes, the following facts have been observed
- Color of the hexa aqua cobalt complexes is pink color.
- They decompose on heating and remain stable on cooling that means process of synthesis of hexa aqua cobalt complexes is exothermic.
Based on above, the correct statements are:
The correct is chloro cobalt complex is blue and aqua cobalt
complex is pink.
The chloro complex is favored by heating.
If the chloro complex is a product, then the reaction must be endothermic.
The correct options are D, E and F.