For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
Protostars are less dense than other stars.
Explanation:
Protostars are very young ‘stars’ made from hydrogen clouds that are beginning to coalesce and collapse under their weight. The hydrogen has not even begun fusing. Therefore, they are mainly made of hydrogen which is the lightest element in the universe.
Stars, however, have begun fusing hydrogen to other heavier elements like helium, carbon, oxygen, and iron. The elements are much heavier than hydrogen making other stars much denser than protostars.
Learn More:
For more on protostars vs stars check out;
brainly.com/question/3719157
brainly.com/question/2229892
#LearnWithBrainly
Answer:
The heliocentric theory was better supported by data explaining the rotation of the planets and other bodies in the solar system.
Explanation:
Hello!
I believe the correct answer to this question is H+ and H2O.
I hope you found this helpful! :)
Answer:
Several of the nonmetals are gases in their elemental form. Elemental hydrogen (H, element 1), nitrogen (N, element 7), oxygen (O, element 8), fluorine (F, element 9), and chlorine (Cl, element 17) are all gases at room temperature, and are found as diatomic molecules (H2, N2, O2, F2, Cl2).
Explanation: