Answer:
230.4 N
Explanation:
From the question given above, the following data were obtained:
Charge (q) of each protons = 1.6×10¯¹⁹ C
Distance apart (r) = 1×10¯¹⁵ m
Force (F) =?
NOTE: Electric constant (K) = 9×10⁹ Nm²/C²
The force exerted can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × (1.6×10¯¹⁹)² / (1×10¯¹⁵)²
F = 9×10⁹ × 2.56×10¯³⁸ / 1×10¯³⁰
F = 2.304×10¯²⁸ / 1×10¯³⁰
F = 230.4 N
Therefore, the force exerted is 230.4 N
Answer:
p_{f} = 6 m / s
Explanation:
We can solve this exercise using conservation of momentum. For this we define a system formed by the two balls, so that the forces during the collision have been intense and the moment is preserved
Initial instant. Before the crash
p₀ = m v +0
Final moment. Right after the crash
= (m + m) v_{f}
how the moment is preserved
p₀ = p_{f}
m v = 2 m v_{f}
v_{f} = v / 2
we calculate
v_{f} = 12/2
p_{f} = 6 m / s
Answer:
Specific heat
Explanation:
The specific heat is the amount of heat, that is energy in transfer to or from a thermodynamic system, required to raise the temperature of 1 g of substance by one degree Celsius or one Kelvin, since one degree on the Celsius scale is equal to one Kelvin.
Answer:
T = 2490 newton
Explanation:
Given that,
Mass of a person, m = 50 Kg
Speed of the swing at the lowest point, v = 10 m/s
Length of the rope, r = 2.5 m
Tension formula is given by
T = mg + ma N
where, T - Tension in the string
m - mass of the body
g - acceleration due to gravity
a - acceleration of the body
Since the person is swinging, the acceleration of the body is given by
a = v²/r m/s²
= 10/2.5 m/s²
a = 40 m/s²
Substituting in T
T = 50 Kg x 9.8 m/s² + 50 Kg X 40 m/s²
= 490 + 2000 Kg m/s²
T = 2490 newton
Therefore the tension in the rope is 2490 newton
Answer:
The extreme pressure from the weight of the gases that make up the Sun raises the temperature of the core enough for the nuclear reactions to take place, Which law best describes this behavior of gases in the Sun? A. Charles law.
Explanation:
if it is helpful....... plzz like and follow