Excchguvuvucucucucucuvihohojojohohphphphogoguretetwrqwwqqwwwesfxffcgvhbjb
Answer:
<h2>6</h2>
Step-by-step explanation:

We have been given an equation of hyperbola
. We are asked to find the center of hyperbola.
We know that standard equation of a vertical hyperbola is in form
, where point (h,k) represents center of hyperbola.
Upon comparing our given equation with standard vertical hyperbola, we can see that the value of h is 6.
To find the value of k, we need to rewrite our equation as:

Now we can see that value of k is
. Therefore, the vertex of given hyperbola will be at point
and option D is the correct choice.
Part a)
Answer: 5*sqrt(2pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(50/pi)
r = sqrt(50)/sqrt(pi)
r = (sqrt(50)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(50pi)/pi
r = sqrt(25*2pi)/pi
r = sqrt(25)*sqrt(2pi)/pi
r = 5*sqrt(2pi)/pi
Note: the denominator is technically not able to be rationalized because of the pi there. There is no value we can multiply pi by so that we end up with a rational value. We could try 1/pi, but that will eventually lead back to having pi in the denominator. I think your teacher may have made a typo when s/he wrote "rationalize all denominators"
============================================================
Part b)
Answer: 3*sqrt(3pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(27/pi)
r = sqrt(27)/sqrt(pi)
r = (sqrt(27)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(27pi)/pi
r = sqrt(9*3pi)/pi
r = sqrt(9)*sqrt(3pi)/pi
r = 3*sqrt(3pi)/pi
Note: the same issue comes up as before in part a)
============================================================
Part c)
Answer: sqrt(19pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(19/pi)
r = sqrt(19)/sqrt(pi)
r = (sqrt(19)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(19pi)/pi