Answer:
In an experiment, a student transferred 4.50 mL of a liquid into a pre-weighed beaker (the weight of which was determined to be 35.986 g ).
Explanation:
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>
<em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em>
Maybe they had to consider the habitat to make sure the habitat they were releasing the dragonflies into would be appropriate for the dragonflies.
Answer:
The answer is -consumer to consumer interaction
Because when you take the sand out it doesn't stay the same shape
2Ca + O2 = 2CaO
First, determine which is the excess reactant
72.5 g Ca (1 mol) =1.8089725036
(40.078 g)
65 g O2 (1 mol) =2.0313769611
(15.999g × 2)
Since the ratio of to O2 is 2:1 in the balanced reaction, divide Ca's molar mass by 2 to get 0.9044862518. this isn't necessary because Ca is already obviously the limiting reactant. therefore, O2 is the excess reactant.
Now do the stoichiometry
72.5 g Ca (1 mol Ca) (1 mol O2)
(40.078 g Ca)(2 mol Ca)(31.998g O2)
=0.0282669621 g of O2 left over