Answer:
The electrons where in motion
Answer:
B. They oxidize hydrocarbons to form less toxic gases.
Explanation:
A catalytic converter can be defined as an anti-pollution device containing a catalyst like platinum-iridium, installed in the exhaust chamber of an automobile so as to chemically convert harmful (poisonous) pollutants such as unburned hydrocarbons and carbon monoxide (CO), sulfur dioxide (S02), nitrogen oxide (NO) etc., into less harmful, poisonous or toxic chemical compounds.
This ultimately implies that, catalytic converters are typically used for converting harmful gases into less harmful, poisonous or toxic gases and molecules e.g carbon dioxide (C02) and water (H2O). This helps to prevent global warming, enhance the conservation of natural resources, as well as preserve the lives of living organisms and their natural habitat.
<em>Hence, the statement which best describes the use of catalytic converters in automobiles is that they oxidize hydrocarbons to form less toxic gases.</em>
It is 1-3-1-3
so 1Al2O3 + 3H2So4 ---> 1Al2(So4)3 + 3H2O
Answer:
the friction?? or the movement
Explanation:
sense the salt is so light its easy to move
Answer:
5.56 × 10⁻⁸
Explanation:
Step 1: Given data
- Concentration of the weak acid (Ca): 0.187 M
Step 2: Calculate the concentration of H⁺
We will use the following expression.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -3.99 = 1.02 × 10⁻⁴ M
Step 3: Calculate the acid dissociation constant (Ka)
We will use the following expression.
![Ka = \frac{[H^{+}]^{2} }{Ca} = \frac{(1.02 \times 10^{-4})^{2} }{0.187} = 5.56 \times 10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%20%7D%7BCa%7D%20%3D%20%5Cfrac%7B%281.02%20%5Ctimes%2010%5E%7B-4%7D%29%5E%7B2%7D%20%7D%7B0.187%7D%20%3D%205.56%20%5Ctimes%2010%5E%7B-8%7D)