Answer:
Gamma range
Explanation:
A very intense start is a bright star at very high temperature. Now, hotter the object shorter is the wavelength of peak radiation. The increasing order of wavelength of the given regions in the electromagnetic spectrum are:
gamma range < ultra violet < visible < infrared
Ideally, since the shortest wavelength based on the given options is the gamma range, the peak intensity can also be expected to fall at that wavelength. If the star spectrum was recorded in the UV-visible range of the EM spectrum, then it would fall in the UV range
Answer:
32.5g of sodium carbonate
Explanation:
Reaction of sodium carbonate (Na₂CO₃) with Mg²⁺ and Ca²⁺ as follows:
Na₂CO₃(aq) + Ca²⁺(aq) → CaCO₃(s)
Na₂CO₃(aq) + Mg²⁺(aq) → MgCO₃(s)
<em>1 mole of carbonate reacts per mole of the cations.</em>
<em />
To know the mass of sodium carbonate we must know the moles of carbonate we need to add based on the moles of the cations:
<em>Moles Mg²⁺:</em>
2.91L * (0.0661 moles MgCl₂ / 1L) = 0.192 moles MgCl₂ = Moles Mg²⁺
<em>Moles Ca²⁺:</em>
2.91L * (0.0396mol Ca(NO₃)₂ / 1L) = 0.115 moles Ca(NO₃)₂ = Moles Ca²⁺
That means moles of sodium carbonate you must add are:
0.192 moles + 0.115 moles = 0.307 moles sodium carbonate.
In grams (Using molar mass Na₂CO₃ = 105.99g/mol):
0.307 moles Na₂CO₃ * (105.99g / mol) =
<h3>32.5g of sodium carbonate</h3>
Answer:
Explanation:
Isotopes are atoms of elements that have the same atomic number but different mass number hence ISOTOPY. Radioactive Isotopes on the other hand are unstable as they either undergo Alpha decay, beta decay or gamma decay compared to stable isotopes.
Radioactive elements decay at varyinf rates as such the rate of radioactive decay is used in the characterization of radioactive element and mostly expressed in terms of the half life of the radioactive elements.
Half life is the time taken for half of the total atoms of an elements to decay into half of its initial sizes. for example, the half life of radium-226 is 1622 years, it implies that if we have 1000000 radium atoms at the beginning, then at the end of 1622years, 500000 would have disintegrated. These phenomenon can never be experienced by stable isotopes as such they can not be used in carbon dating techniques. reason why uranium-238 is mostly and commonly used in the earth crust to estimate the ages of rocks because it has a half life of 4.5 x 10^9 years.
And also, the radioactive isotopes of most common light element are short, they have very short half life (few days or weeks) and they decay rapidly to vanshing point, as such, they are not found in nature to any reasonable extent.