Answer: It should be used 2 for type-A and 3 for type-B to minimize the cost.
Step-by-step explanation: As it is stipulated, <u>x</u> relates to type-A and y to type-B.
Type-A has 60 deluxe cabins and B has 80. It is needed a minimum of 360 deluxe cabins, so:
60x + 80y ≤ 360
For the standard cabin, there are in A 160 and in B 120. The need is for 680, so:
160x + 120y ≤ 680
To calculate how many of each type you need:
60x + 80y ≤ 360
160x + 120y ≤ 680
Isolating x from the first equation:
x = 
Substituing x into the second equation:
160(
) + 120y = 680
-3200y+1800y = 10200 - 14400
1400y = 4200
y = 3
With y, find x:
x = 
x = 
x = 2
To determine the cost:
cost = 42,000x + 51,000y
cost = 42000.2 + 51000.3
cost = 161400
To keep it in a minimun cost, it is needed 2 vessels of Type-A and 3 vessels of Type-B, to a cost of $161400
The answer is -6. because 12,10,8,6,4,2,0,-2,-4,-6.
Answer:
<em><u>3</u></em><em><u>(</u></em><em><u> </u></em><em><u>x </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u> </u></em><em><u>)</u></em><em><u>. </u></em><em><u>=</u></em><em><u> </u></em><em><u>5</u></em><em><u>(</u></em><em><u> </u></em><em><u>x </u></em><em><u>-</u></em><em><u> </u></em><em><u>2</u></em><em><u>)</u></em>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>5</u></em><em><u>x</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em>
<em><u>-2x </u></em><em><u>=</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>6</u></em><em><u> </u></em>
<em><u>minus,</u></em><em><u>minus </u></em><em><u>cancel</u></em>
<em><u>x </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>6</u></em><em><u>/</u></em><em><u>2</u></em><em><u> </u></em>
<em><u>x </u></em><em><u>=</u></em><em><u> </u></em><em><u>8</u></em><em><u> </u></em>
Answer:
the required probability is 0.09
Option a) 0.09 is the correct Answer.
Step-by-step explanation:
Given that;
mean μ = 7
x = 4
the probability of exactly 4 bridge construction projects taking place at one time in this state = ?
Using the Poisson probability formula;
P( X=x ) = ( e^-μ × u^x) / x!
we substitute
P(X = 4) = (e⁻⁷ × 7⁴) / 4!
= 2.1894 / 24
= 0.0875 ≈ 0.09
Therefore the required probability is 0.09
Option a) 0.09 is the correct Answer.