Using the greatest common factor, it is found that the greatest dimensions each tile can have is of 3 feet.
---------------------------
- The widths of the walls are of <u>27 feet, 18 feet and 30 feet.</u>
- <u>The tiles must fit the width of each wall</u>, thus, the greatest dimension they can have is the greatest common factor of 27, 18 and 30.
To find their greatest common factor, these numbers must be factored into prime factors simultaneously, that is, only being divided by numbers of which all three are divisible, thus:
27 - 18 - 30|3
9 - 6 - 10
No numbers by which all of 9, 6 and 10 are divisible, thus, gcf(27,18,30) = 3 and the greatest dimensions each tile can have is of 3 feet.
A similar problem is given at brainly.com/question/6032811
The answer is (4/5). If you multiply the first (5/12) over and over, you get this sequence.
Answer:
180,45
Step-by-step explanation:
Answer:
C. 
Step-by-step explanation:
The radius of the circle is 24 units, then the area of the whole circle is

The shaded circle is limited by 45° angle, so its area is
of the area of the whole circle.
The area of the shaded circle is