The correct answer for the question that is being presented above is this one: "C. planetesimals ® heavier elements ® inner planets ® protoplanets" The list of the stages of development of the inner planets is this <span>C. planetesimals ® heavier elements ® inner planets ® protoplanets</span>
Attraction between a cation in one element and an anion in the other element
D, the more liquid there is, the less the temperature will be affected
Answer:
pH = 1.33
Explanation:
Because HCl is a strong acid, each mole of HCl will completely dissociate into H⁺ and Cl⁻ species.
Now we calculate the molar concentration (molarity) of H⁺:
- Molarity = moles / volume
(750 mL ⇒ 750 / 1000 = 0.750 L)
- Molarity = 0.035 moles / 0.750 L
Then we calculate the pH of the solution:
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.