D
all of above becuase it's all conservation
The product of reduction of ethyl 4-oxobutanoate with sodium borohydride in ethanol at room temperature for 30 minutes is ethyl 4- hydroxybutanoate .
Sodium borohydride is a relatively selective reducing agent Ethanolic solutions of Sodium borohydride reduces aldehyde , and ketone , in the presence of acid chloride , ester , epoxide , lactones , acids , nitriles , nitro groups.
The sodium borohydride does not reduce ester group because sodium borohydride is not strong enough and the electrophilicity at carbony carbon of ester is not more as compare toaldehyde , and ketone
The product of reduction of ethyl 4-oxobutanoate with sodium borohydride in ethanol at room temperature for 30 minutes is ethyl 4- hydroxybutanoate .
to learn more about sodium borohydride and ethanol click here ,
brainly.com/question/12955502
#SPJ4
Answer:

Explanation:
A covalent bond involves the sharing of electrons to make the atoms more stable, and so they satisfy the Octet Rule (8 valence electrons).
Typically each atom contributes an electron to form an electron pair. This is a single bond. There are also double bonds (two pairs of electrons), triple bonds (three pairs of electrons), and coordinate covalent bonds.
Sometimes, to satisfy the Octet Rule and achieve stability, one atom contributes both of the electrons in an electron pair. This is different from other covalent bonds because usually each of the 2 atoms contributes an electron to make a pair.
Answer: caffeine is a compound.
Explanation:
1) As stated c<span>affeine contains hydrogen, carbon, nitrogen, and oxygen atoms in a fixed ratio.
2) The definition of compound is a pure substance formed by chemical bonding of two or more fifferent elements. That means a defined ratio of the elements in the compound, which conferes uniform and equal properties to every part of the compound.
Some examples of compounds are salt (NaCl), water (H2O), vinegard (CH3 COOH).
A mixture combines several elements or compounds, not bonded by chemical bonds but mixed in ratios which may vary.
</span>
367.2 g of silver
Explanation:
To find the mass of a substance knowing the number of moles we use the following formula:
number of mole = mass / molecular weight
In the case of silver we use the atomic weight of 108 g/mole.
mass = number of moles × molecular weight
mass of silver = 3.4 moles × 108 g/mole
mass of silver = 367.2 g
Learn more about:
moles
brainly.com/question/2293005
#learnwithBrainly