Answer:
Alternative hypothesis: "AT LEAST ONE" of the population means is different from the others
Step-by-step explanation:
Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".
The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"
If we assume that we have n groups and we want to check if the population means are equal, th best way to check this it's with an ANOVA test.
The hypothesis for this case are:
Null hypothesis:
Or in words:
Null hypothesis: All treatments/samples come from populations with the same mean
Alternative hypothesis: Not all the means are equal 
Or we can say:
Alternative hypothesis: "AT LEAST ONE" of the population means is different from the others
Answer:
She should have multiplied by 10,000
Step-by-step explanation:
Given table:

To find the conversion rate:

Therefore, 1 hectogram = 10,000 centigrams
So when converting hectograms to centigrams, multiply the mass by 10,000.
⇒ 50 hg × 10,000 = 500,000 centigrams
Rachel's error was that she should have multiplied by 10,000.
Answer:
b. 
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>
</u>
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Rewrite function [Exponential Rule - Root Rewrite]:
![\displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%28x%29%20%3D%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D)
- Chain Rule:
![\displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cbigg%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5BF%28x%29%5D)
- Basic Power Rule:
![\displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%20-%201%7D%20%5Ccdot%20F%27%28x%29)
- Simplify:
![\displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B-2%7D%7B3%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
<u>Step 3: Evaluate</u>
- Substitute in <em>x</em> [Derivative]:
![\displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%285%29%20%3D%20%5Cfrac%7BF%27%285%29%7D%7B3%5BF%285%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
- Substitute in function values:

- Exponents:

- Multiply:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
The answer is D. Group =2