Answer:
(0.18 x 23.50) + 23.50
Step-by-step explanation:
First, find the percentage of 23.50 (equation in the parenthesis). 18% is equivalent to 0.18. Then, you add that to 23.50. That's the total amount Sam should pay. I hope this makes sense.
Answer:
Bart is correct
Step-by-step explanation:
Answer:
By the Central Limit Theorem, it is approximately normal with mean 650 and standard deviation 4.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean of 650 and a standard deviation of 24.
This means that
.
Sample of 36:
This means that 
What is the shape of the sampling distribution you would expect to produce?
By the Central Limit Theorem, it is approximately normal with mean 650 and standard deviation 4.
A) Profit is the difference between revenue an cost. The profit per widget is
m(x) = p(x) - c(x)
m(x) = 60x -3x^2 -(1800 - 183x)
m(x) = -3x^2 +243x -1800
Then the profit function for the company will be the excess of this per-widget profit multiplied by the number of widgets over the fixed costs.
P(x) = x×m(x) -50,000
P(x) = -3x^3 +243x^2 -1800x -50000
b) The marginal profit function is the derivative of the profit function.
P'(x) = -9x^2 +486x -1800
c) P'(40) = -9(40 -4)(40 -50) = 3240
Yes, more widgets should be built. The positive marginal profit indicates that building another widget will increase profit.
d) P'(50) = -9(50 -4)(50 -50) = 0
No, more widgets should not be built. The zero marginal profit indicates there is no profit to be made by building more widgets.
_____
On the face of it, this problem seems fairly straightforward, and the above "step-by-step" seems to give fairly reasonable answers. However, if you look at the function p(x), you find the "best price per widget" is negatve for more than 20 widgets. Similarly, the "cost per widget" is negative for more than 9.8 widgets. Thus, the only reason there is any profit at all for any number of widgets is that the negative costs are more negative than the negative revenue. This does not begin to model any real application of these ideas. It is yet another instance of failed math curriculum material.
Answer:
Step-by-step explanation:
Given the equation = 
Required: To factor out 1/3;

1/3 is common to both sides;
So, 1/3 is a common factor

To solve for the value of p;
= 0



