Answer:
Step-by-step explanation:
f(x) = (x + 1)^2 − 2 =x²+2x+1-2=x²+2x-1
g(x) = −(x − 2)^2 + 1 =-(x^2-4x+2)+1=-x^2+4x-2+1=-x^2+4x-1
(h,k) vertex of f(x): x²+2x-1 (a=1,b=2, c=-1)
h=-b/2a=-2/2=-1
plug the h value(-1) in the equation x²+2x-1 to get k=f(-1)=-2
vertex(-1,-2) , the coefficient a is positive so the graph open up.
g=-x²+4x-1 (a=-1,b=4,c=-1)
vertex (h,k) h=-b/2a=-4/-2= 2
plug 2 in the equation-x²+4x-1
k=3
vertex (2,3)
the graph open downward because a is negative