Explanation:
Since, aluminium chloride is an eye and skin irritant. Therefore, it is better to follow safety measures while dealing with such a chemical.
Hence, it is good to wear a lab coat while working in a laboratory and wear chemical resistant gloves so that our skin does not come in contact with the chemical.
Also, safety glasses will prevent the eyes if there is spurting of chemical.
Thus, we can conclude that chemical-resistant gloves, a lab coat, and safety glasses will prevent you from coming into contact with the given hazard.
Answer:
Rate of reaction =
Rate of consumption of A = 
Rate of consumption of B = 
Rate of formation of D = 
Explanation:
According to laws of mass action for the given reaction,
![Rate= -\frac{1}{2}\frac{\Delta [A]}{\Delta t}=-\frac{\Delta [B]}{\Delta t}=\frac{1}{2}\frac{\Delta [C]}{\Delta t}=\frac{1}{3}\frac{\Delta [D]}{\Delta t}](https://tex.z-dn.net/?f=Rate%3D%20-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CDelta%20%5BA%5D%7D%7B%5CDelta%20t%7D%3D-%5Cfrac%7B%5CDelta%20%5BB%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CDelta%20%5BC%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7B%5CDelta%20%5BD%5D%7D%7B%5CDelta%20t%7D)
where,
is rate of consumption of A,
is rate of consumption of B,
is rate of formation of C and
is rate of formation of D
Here ![\frac{\Delta [C]}{\Delta t}=2.7mol.dm^{-3}.s^{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20%5BC%5D%7D%7B%5CDelta%20t%7D%3D2.7mol.dm%5E%7B-3%7D.s%5E%7B-1%7D)
So, Rate of reaction = 
Rate of formation of D = ![(\frac{3}{2}\times \frac{\Delta [C]}{\Delta t})=(\frac{3}{2}\times 2.7mol.dm^{-3}.s^{-1})=4.15mol.dm^{-3}.s^{-1}](https://tex.z-dn.net/?f=%28%5Cfrac%7B3%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5CDelta%20%5BC%5D%7D%7B%5CDelta%20t%7D%29%3D%28%5Cfrac%7B3%7D%7B2%7D%5Ctimes%202.7mol.dm%5E%7B-3%7D.s%5E%7B-1%7D%29%3D4.15mol.dm%5E%7B-3%7D.s%5E%7B-1%7D)
Rate of consumption of A = ![(\frac{2}{2}\times \frac{\Delta [C]}{\Delta t})=(\frac{2}{2}\times 2.7mol.dm^{-3}.s^{-1})=2.7mol.dm^{-3}.s^{-1}](https://tex.z-dn.net/?f=%28%5Cfrac%7B2%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5CDelta%20%5BC%5D%7D%7B%5CDelta%20t%7D%29%3D%28%5Cfrac%7B2%7D%7B2%7D%5Ctimes%202.7mol.dm%5E%7B-3%7D.s%5E%7B-1%7D%29%3D2.7mol.dm%5E%7B-3%7D.s%5E%7B-1%7D)
Rate of consumption of B = ![(\frac{1}{2}\times \frac{\Delta [C]}{\Delta t})=(\frac{1}{2}\times 2.7mol.dm^{-3}.s^{-1})=1.35mol.dm^{-3}.s^{-1}](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5CDelta%20%5BC%5D%7D%7B%5CDelta%20t%7D%29%3D%28%5Cfrac%7B1%7D%7B2%7D%5Ctimes%202.7mol.dm%5E%7B-3%7D.s%5E%7B-1%7D%29%3D1.35mol.dm%5E%7B-3%7D.s%5E%7B-1%7D)
-OH is elctron donating -C=-N is electron withdrawing -O-CO-CH3 is electron withdrawing -N(CH3)2 is electron donating -C(CH3)3 is electron donating -CO-O-CH3 is electron withdrawing -CH(CH3)2 is electron donating -NO2 is electrong withdrawing -CH2
Answer:

Explanation:
Hello there!
In this case, according to the given information, we can set up the appropriate chemical equation when ammonium phosphate reacts with sodium chloride in aqueous solution:

Which stands for a double replacement reaction, whereby ammonium changes phosphate to chloride and sodium changes chloride to phosphate on the products side. In addition, we can balance the aforementioned equation as shown below:

Regards!
"EMPIRICAL FORMULA" tells that!!