Assuming that nitrogen gas is ideal, we can use the equation PV = nRT to relate first conditions to the second condition. At constant temperature, pressure and volume are indirectly related as follows:
P = k / V
k is equal nRT
P1V1 = P2V2
P2 = 101.325 ( 4.65 ) / .480 = 981.586 kPa
Answer : The correct expression will be:

Explanation :
The chemical reactions are :
(1)

(2)

The final chemical reaction is :

Now we have to calculate the value of
for the final reaction.
Now equation 1 is multiply by 2 and then add both the reaction we get the value of 'K'.
If the equation is multiplied by a factor of '2', the equilibrium constant will be the square of the equilibrium constant of initial reaction.
If the two equations are added then equilibrium constant will be multiplied.
Thus, the value of 'K' will be:

The Rutherford–Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one orbital to another, be proportional to the mathematical square of atomic charge (Z2). Experimental measurement by Henry Moseley of this radiation for many elements (from Z = 13 to 92) showed the results as predicted by Bohr. Both the concept of atomic number and the Bohr model were thereby given scientific credence. The atomic number is the number of _z_ an atom.
Answer:
I hope you understand please follow me please
The mass of hydrogen atoms that is measured at 54 u given the relationship is 89.64×10¯²⁴ g
<h3>Conversion scale </h3>
1 u = 1.66×10¯²⁴ g
<h3>How to determine the mass of hydrogen atoms </h3>
- Mass of Hydrogen (u) = 54 u
- Mass of Hydrogen (g) =?
1 u = 1.66×10¯²⁴ g
Therefore
54 u = 54 × 1.66×10¯²⁴ g
54 u = 89.64×10¯²⁴ g
Thus, the mass of the hydrogen atoms measured at 54 u is 89.64×10¯²⁴ g
Learn more about conversion:
brainly.com/question/2139943
#SPJ1