1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
2 years ago
9

Help! Solve for x !! Use picture below

Mathematics
1 answer:
creativ13 [48]2 years ago
7 0

Answer:

x=7

Step-by-step explanation:

since it is the same side length,

3x+6 = 10x-43

3x-10x = -43-6

-7x = -49

x=-49/-7=7

please mark brainliest

You might be interested in
Eloise hung artwork on 2/5of a bulletin board.she hung math papers on 1/5of the same bulletin board.what part of the bulletin bo
erica [24]
Here, number of bulletin board = 1
Artwork = 2/5 th, & math papers = 1/5

So, it would be: 1/5 + 2/5 = 3/5

In short, Your Answer would be 3/5 or 0.60

Hope this helps!
7 0
3 years ago
I need help with 4 and 5 what are the answers?
ira [324]

Answer:

4. U = 54

5. C=80

Step-by-step explanation:

Basically you move the denominator to the other side and multiply. please take note of the signs(positve, negative)

7 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
The equation 4x2 – 24x + 4y2 + 72y = 76 is equivalent to
DerKrebs [107]

Answer:

Option 4 is correct.

The equation 4x^2 -24x + 4y^2 + 72y = 76 is equivalent to 4(x-3)^2 + 4(y+9)^2 =436

Step-by-step explanation:'

Given equation: 4x^2 -24x + 4y^2 + 72y = 76

First group the terms with x and those with y;

(4x^2-24x)+(4y^2+72y) = 76

Next, we complete the squares.

We can do this by adding a third term such that the x terms and the y terms are perfect squares.

For this we must either add the same value on the other side of the equation or subtract the same value on the same side so that the equality is maintained.

⇒4(x^2-6x) +4(y+18y) = 76

or

4(x^2 -6x +3^2 -3^2) + 4(y^2 +18y +9^2 -9^2) = 76

4(x^2-6x + 3^2) - 36 + 4(y^2+18y +9^2) - 324 = 76

4(x-3)^2 + 4(y+9)^2 - 360 =76

Add 360 on both sides we get;

4(x-3)^2 + 4(y+9)^2 =360 +76

Simplify:

4(x-3)^2 + 4(y+9)^2 =436

Therefore, the given equation is equivalent to 4(x-3)^2 + 4(y+9)^2 =436

5 0
3 years ago
The slope of a line is 7/10 . One point on the line has coordinates (1, 2). Which ordered pair represents another point on the l
mash [69]
(x,y)

y=mx+b
m=slope
b=yintercept
slope=7/10
one point is (1,2) or x=1, then y=2
find b
y=7/10x+b
2=7/10(1)+b
2=7/10+b
minus 7/10 both sides
1 and 3/10=b
13/10=b
y=7/10x+13/10
input values for x and get values for y
one point is (0,13/10)
7 0
3 years ago
Other questions:
  • Which number line can be used to find the distance between (-1,2) and (-5,2)
    13·2 answers
  • I need help with this and please show your work
    14·1 answer
  • Solve for y (slope intercept form) 5x+2y=-10 &amp;more
    10·1 answer
  • What is the measure of AC ? (First Picture)
    13·1 answer
  • Plz help n let me know if im correct thanks!
    10·2 answers
  • Order the following numbers from least to greatest
    11·1 answer
  • Se desea construir un vaso de papel en forma de cono circular recto que tenga un volumen de 25πcm3
    7·1 answer
  • Please help PLEASE WILL GIVE BRAINS
    11·1 answer
  • Help OvO with this math question-
    14·2 answers
  • A company's stock begins the week with a price of $43.85 per share. THe price changes by +$2.70 each day for the first two days,
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!