Answer: The moles of gas present in the cylinder is 0.34 moles.
Explanation:
Given:
= 2.7 atm,
= 3.1 L,
= 300 K
= ?,
= 9.4 L,
= 610 K
Formula used to calculate the final temperature is as follows.

Substitute the values into above formula as follows.

Now, moles present upon heating the cylinder are as follows.

Thus, we can conclude that moles of gas present in the cylinder is 0.34 moles.
Answer:
<em>Acylation can be used to prevent rearrangement reactions that would normally occur in alkylation. </em>
Answer:
(i) Oxidizing Agent: NO2 / Reducing Agent NH3-
(ii) Oxidizing Agent AgNO3 / Reducing Agent Zn
Explanation:
(i) 8NH3( g) + 6NO2( g) => 7N2( g) + 12H2O( l)
In this reaction, both two reactants contain nitrogen with a different oxidation number and produce only one product which contains nitrogen with a unique oxidation state. So, nitrogen is oxidized and reduced in the same reaction.
Nitrogen Undergoes a change in oxidation state from 4+ in NO2 to 0 in N2. It is reduced because it gains electrons (decrease its oxidation state). NO2 is the oxidizing agent (electron acceptor).
Nitrogen Changes from an oxidation state of 3- in NH3 to 0 in N2. It is oxidized because it loses electrons (increase its oxidation state). NH3 is the reducing agent (electron donor)
(ii) Zn(s) +AgNO3(aq) => Zn(NO3)2(aq) + Ag(s)
Ag changes oxidation state from 1+ to 0 in Ag(s).
Ag is reduced because it gains electrons and for this reason and AgNO3 is the oxidizing agent (electron acceptor)
Zn Changes from an oxidation state of 0 in Zn(s) to 2+ in Zn(NO3)2. It is oxidized and for this reason Zn is the reducing agent (electron donor).
Balanced equation:
Zn(s) +2AgNO3(aq) => Zn(NO3)2(aq) + 2Ag(s)
Speific heat capacity is measured with the aid of determining how a whole lot warmth electricity is needed to increase one gram of a substance one digree Celsius. The Speific heat capacity of water is 4.2 joules per gram per degree Celsius or 1 calorie in step with gram per digree Celsius.
The specific heat capacity is defined as the amount of heat (J) absorbed consistent with unit mass (kg) of the substance while its temperature increases 1 ok (or 1 °C), and its units are J/(kg k) or J/(kg °C).
Factors specific heat capacity relate to are temperature and strength.
The Speific heat capacity C can be measured as q = mC∆T
Or, C = q/m∆T
where,
C is the specific heat capacity
q is the quantity of heat required
m is the mass
∆T is the change in temperature
As a consequence so as to degree the specific heat capacity we need to recognize mass of the substance, quantity of heat lost or gain by the substance and the exchange in temperature.
Lear more about Speific heat capacity here: brainly.com/question/17162473
#SPJ4
Answer:it will be malfunction
Explanation: