Answer:
126 m
Explanation:
Distance=time*speed➡42*3=126m.
It’s definitely B but I’m not sure
Answer:
ΔH = 125.94kJ
Explanation:
It is possible to make algebraic sum of reactions to obtain ΔH of reactions (Hess's law). In the problem:
1. 2W(s) + 3O2(g) → 2WO3(s) ΔH = -1685.4 kJ
2. 2H2(g) + O2(g) → 2H2O(g) ΔH = -477.84 kJ
-1/2 (1):
WO3(s) → W(s) + 3/2O2(g) ΔH = 842.7kJ
3/2 (2):
3H2(g) + 3/2O2(g) → 3H2O(g) ΔH = -716.76kJ
The sum of last both reactions:
WO3(s) + 3H2(g) → W(s) + 3H2O(g)
ΔH = 842.7kJ -716.76kJ
<h3>ΔH = 125.94kJ </h3>
The amount of absorption force is not same at all time and at all where .
It has difference at different time periods
So during those the curve goes up and down and repeat this flow
So there are dips
The gas inside the can and the can’s volume are both constant.
The gas pressure increases with increasing temperature.
The can will burst if the pressure becomes great enough.
The gas law that applies is Gay-Lussac’s law.