Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K
n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression
= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Answer:
1.1713 moles
Explanation:
RFM of N2O5= (14*2)+(16*4)=108
Moles of N2O5= Mass/RFM= 63.25/108= 0.5856 moles
Mole ratio of N2O5:NO2 = 2:4
Therefore moles of NO2= 4/2*0.5856= 1.1713 moles
Answer:
1. B, D,
2.A, F
Explanation:
1. According to the law of conservation of mass, In a course of chemical reaction, matter can neither be created nor destroyed but can be changed from one form to another. This means the amount of matter at the begining and ending of a reaction must be thesame.
2. Chemical reaction is not easily reversible. when gas is produced, provided the reaction system is an open system, the gas cannot be recovered and the reactants cannot be recovered from the products. likewise color change are attributed to chemical reaction
Molarmass of beryllium is 9.0
molar mass of silicon is 28.4
molar mass of calcium is 40.1
molar mass of rhodium is 103.