Answer:
Correlation coefficient ≈ 0.9445
This indicates that the weight of a student increases as the height of the student increases.
Step-by-step explanation:
The rest of the question is the following table
value of x (<u>height</u>) are 58, 59, 60, 62, 63, 64, 66, 68, 70
Value of y (<u>weight</u>) are: 122, 128, 126, 133, 145, 136, 144, 150, 151
=======================================================
To calculate the correlation coefficient we will use the following form:
![r = \frac{n(\sum xy)- (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2-(\sum y)^2} }](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7Bn%28%5Csum%20xy%29-%20%28%5Csum%20x%29%28%5Csum%20y%29%7D%7B%5Csqrt%7Bn%5Csum%20x%5E2%20-%20%28%5Csum%20x%29%5E2%7D%20%5Csqrt%7Bn%5Csum%20y%5E2-%28%5Csum%20y%29%5E2%7D%20%7D)
So, n (the number of terms) = 9
∑x = 570, ∑y= 1236, ∑ x²= 36234, ∑ y²= 170694 and ∑xy=78617
So, the correlation coefficient =
![r = \frac{9\times 78617- 570\times 1236}{\sqrt{9\times 36234-(570)^2}\sqrt{9\times 170694-(1236)^2}}\\](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B9%5Ctimes%2078617-%20570%5Ctimes%201236%7D%7B%5Csqrt%7B9%5Ctimes%2036234-%28570%29%5E2%7D%5Csqrt%7B9%5Ctimes%20170694-%281236%29%5E2%7D%7D%5C%5C)
∴ r = 0.9445
So, weight of a student increases as the height of the student increases.