Answer:

or

Step-by-step explanation:
The expression
can be simplified by first writing the fraction under one single radical instead of two.

5/15 simplifies because both share the same factor 5.
It becomes 
This can simplify further by breaking apart the radical.

A radical cannot be left in the denominator, so rationalize it by multiplying by √3 to numerator and denominator.

Answer: the equation is
4x^2 + 4x - 12
Step-by-step explanation:
A quadratic equation is an equation in which the highest power of the unknown is 2.
The general form of a quadratic equation is expressed as
ax^2 + bx + c
Where
a is the leading coefficient
c is a constant
Assuming we want to write the quadratic equation in x, from the information given, the roots which are given are -2 and 1 and the leading coefficient is 4.
Therefore, the linear factors of the quadratic equation will be (x+2) and (x-1)
the equation becomes
(x+2)(x-1)
= x^2 - x +2x - 3
= x^2 + x - 3
Given a leading coefficient of 4, we will multiply the quadratic expression by 4. It becomes
4(x^2 + x - 3)
= 4x^2 + 4x - 12
Its the last option because anything between 0 to 1 would he smaller than the original
20 / 27 is the probability that a student chosen randomly from the class passed the test or completed the homework.
<u>Step-by-step explanation:</u>
To find the probability that a student chosen randomly from the class passed the test or complete the homework :
Let us take,
- Event A ⇒ a student chosen randomly from the class passed the test
- Event B ⇒ a student chosen randomly from the class complete the homework
We need to find out P (A or B) which is given by the formula,
⇒ P (A or B) = P(A) + P(B) - P(A∪B)
<u>From the given table of data,</u>
- The total number of students in the class = 27 students.
- The no.of students passed the test ⇒ 15+3 = 18 students.
P(A) = No.of students passed / Total students in the class
P(A) ⇒ 18 / 27
- The no.of students completed the homework ⇒ 15+2 = 17 students.
P(B) = No.of students completed the homework / Total students in the class
P(B) ⇒ 17 / 27
- The no.of students who passes the test and completed the homework = 15 students.
P(A∪B) = No.of students both passes and completes the homework / Total
P(A∪B) ⇒ 15 / 27
Therefore, to find out the P (A or B) :
⇒ P(A) + P(B) - P(A∪B)
⇒ (18 / 27) + (17 / 27) - (15 / 27)
⇒ 20 / 27
∴ The P (A or B) is 20/27.
Answer: B) 56
Just multiply all numbers and see which number from the choices match your answers after doing the multiplication! Hope I helped!