1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
15

URGENT

Physics
1 answer:
ella [17]3 years ago
4 0

Answer:

the is metallurgy .....

You might be interested in
In the study of Physics, the "Universal Gas Law" is not considered a law at<br> all.true or false
LiRa [457]

Answer: It’s False hope this helps

Explanation:

4 0
3 years ago
Why is it that we can see blood cells only with a microscope? A) The cells form clumps. B) The cells keep moving about. C) The c
Snezhnost [94]
D the cells are very small
7 0
3 years ago
Read 2 more answers
A 240 g toy car is placed on a narrow 60-cm-diameter track with wheel grooves that keep the car going in a circle. The 1.0 kg tr
lesya [120]

Answer:

The track's angular velocity is W2 = 4.15 in rpm

Explanation:

Momentum angular can be find

I = m*r^2

P = I*W

So to use the conservation

P1 + P2 = 0

I1*W1 + I2*W2 = 0

Solve to w2 to find the angular velocity

0.240kg*0.30m^2*0.79m/s=-1kg*0.30m^2*W2

W2 = 0.435 rad/s

W2 = 4.15 rpm

8 0
3 years ago
When a light bulb is connected to a 4.5 V battery, a current of 0.16 A passes through the bulb filament. What is the resistance
larisa [96]

Answer:

R = 28.125 ohms

Explanation:

Given that,

The voltage of a bulb, V = 4.5 V

Current, I = 0.16 A

We need to find the resistance of the filament. Using Ohm's law,

V = IR

Where

R is the resistance of the filament

So,

R=\dfrac{V}{I}\\\\R=\dfrac{4.5}{0.16}\\\\R=28.125\ \Omega

So, the resistance of the filament is equal to 28.125 ohms.

5 0
3 years ago
Charge q1 = +2.00 μC is at -0.500 m along the x axis. Charge q2 = -2.00 μC is at 0.500 m along the x axis. Charge q3 = 2.00 μC i
Kobotan [32]

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons.

<h3>How to calculate the electrical force experimented on a particle</h3>

The vector <em>position</em> of each particle respect to origin are described below:

\vec r_{1} = (-0.500, 0)\,[m]

\vec r_{2} = (+0.500, 0)\,[m]

\vec r_{3} = (0, +0.500)\,[m]

Then, distances of the former two particles particles respect to the latter one are found now:

\vec r_{13} = (+0.500, +0.500)\,[m]

r_{13} = \sqrt{\vec r_{13}\,\bullet\,\vec r_{13}} = \sqrt{(0.500\,m)^{2}+(0.500\,m)^{2}}

r_{13} =\frac{\sqrt{2}}{2}\,m

\vec r_{23} = (-0.500, +0.500)\,[m]

r_{23} = \sqrt{\vec r_{23}\,\bullet \,\vec r_{23}} = \sqrt{(-0.500\,m)^{2}+(0.500\,m)^{2}}

r_{23} =\frac{\sqrt{2}}{2}\,m

The resultant force is found by Coulomb's law and principle of superposition:

\vec R = \vec F_{13}+\vec F_{23} (1)

Please notice that particles with charges of <em>same</em> sign attract each other and particles with charges of <em>opposite</em> sign repeal each other.

\vec R = \frac{k\cdot q_{1}\cdot q_{3}}{r_{13}^{2}}\cdot \vec u_{13}  +\frac{k\cdot q_{2}\cdot q_{3}}{r_{23}^{2}}\cdot \vec u_{23} (2)

Where:

  • k - Electrostatic constant, in newton-square meters per square Coulomb.
  • q_{1}, q_{2}, q_{3} - Electric charges, in Coulombs.
  • r_{13}, r_{23} - Distances between particles, in meters.
  • \vec u_{13}, \vec u_{23} - Unit vectors, no unit.

If we know that k = 8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}, q_{1} = 2\times 10^{-6}\,C, q_{2} = 2\times 10^{-6}\,C, q_{3} = 2\times 10^{-6}\,C, r_{13} =\frac{\sqrt{2}}{2}\,m, r_{23} =\frac{\sqrt{2}}{2}\,m, \vec u_{13} = \left(-\frac{\sqrt{2}}{2}, - \frac{\sqrt{2}}{2}  \right) and \vec u_{23} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right), then the vector force on charge q_{3} is:

\vec R = \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)

\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)\,[N]

\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N]

And the magnitude of the <em>electrical</em> force on charge q_{3} (R), in newtons, due to the others is found by Pythagorean theorem:

R = 0.102\,N

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons. \blacksquare

To learn more on Coulomb's law, we kindly invite to check this verified question: brainly.com/question/506926

8 0
2 years ago
Other questions:
  • Worth 50 point!!!
    14·1 answer
  • The spring of a toy car stores 10 J of potential energy. Only 8 J of energy changes to kinetic energy as the car moves. What hap
    10·1 answer
  • A rod of length L has a charge Q uniformly distributed along its length. The rod lies along the y axis with one end at the origi
    10·1 answer
  • A girl of mass m1=60 kilograms springs from a trampoline with an initial upward velocity of v1=8.0 meters per second. At height
    11·1 answer
  • What is the si unit amperes used to measure??
    14·1 answer
  • Why do electrons transfer charge and not protons?
    9·1 answer
  • The earth orbits the sun once per year at the distance of 1.50 x 1011 m. Venus orbits the sun at a distance of 1.08 x 1011 m. Th
    9·1 answer
  • g Calculate the maximum wavelength of light that will cause the photoelectric effect for potassium. Potassium has work function
    6·1 answer
  • If something is frictionless does it have thermal energy
    11·1 answer
  • The drawing shows a collision between 2 pucks on an air-hockey table. Puck A has a mass of 0.0380 kg and is moving along the x a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!