Answer:
confounding cause they had exposure to many programmes
Answer:
Explanation:
Angular momentum has a formula of L = mvr. Fillingin:
L = (1.0)(5.0)(1.0)
L = 5.0 kg*m/s
Answer:
717 Hz
Explanation:
<u>solution:</u>
The wave with three antinodes has m = 3. Thus, f_3 = 3f_1 and so the fundamental frequency of the string is
f_1 =f_3/3
=430 Hz/3
=143 Hz
Thus, the frequency of the fifth harmonic is
f_5 = 5*f_1
= 5*143 Hz
= 717 Hz
Answer:
124.88 km/h
34.69 m/s
Explanation:
1633.8 km = 1633800 m
13 hours 4 minutes 58 seconds = 13 + 4/60 + 58/3600 = 13.083 hours
13 hours 4 minutes 58 seconds = 13*3600 + 4*60 + 58 = 47098 seconds
So the average speed in km/h is
1633.8 / 13.083 = 124.88 km/h
The average speed in m/s is
1633800 / 47098 = 34.69 m/s
Answer:
A) True, B) False, C) False and D) false
Explanation:
Let's solve the problem using the law of conservation of energy to know if the statements are true or false
Let's look for mechanical energy
Initial
Emo = Ke = ½ k Dx2
Final
Em1= ½ m v12
Emo = Em1
½ k Δx2 = ½ m v₁²
v₁² = k / m Δx²
v₁ = √ k/m Δx
Now let's calculate the speed when it falls
Vfy² = Voy² - 2gy
Vfy² = - 2gy
Vf² = v₁² + vfy²
A) True v₁ = A Δx
.B) False. As there is no rubbing the mechanical energy conserves
.C) False the velocity is proportional to the square root of the height
v2y = v2 √2
. D) false promotional compression speed