29.213 cm3
First, calculate the mass of the water used. You do this by subtracting the original mass of the flask from the combined mass of the water and flask, giving:60.735 g - 31.601 g = 29.134 g
So we now know we have 29.134 g of water. To calculate the volume of the flask, simply divide by the density of the water, giving:29.134 g / (0.9973 g/cm3) = 29.213 cm3
The minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s. The correct option is D.
<h3>What is mechanical energy?</h3>
The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.
M.E = KE +PE
A boy is trying to roll a bowling ball up a hill. The friction is ignored. The ball must have to reach the top of the hill with a velocity. The acceleration due to gravity, g = 9.8 m/s²
The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.
M.E bottom of hill = M.E on top of hill
Kinetic energy + Potential energy = Kinetic energy + Potential energy
1/2 mu² + 0 = 0 + mgh
At the top of hill, the velocity will become zero. So, final kinetic energy is zero.
Substituting the values, we have
1/2 x u² = 9.8 x 22.5
u = sqrt [2 x9.8 x 22.5 ]
u= 21 m/s
Thus, the minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s.
Learn more about mechanical energy.
brainly.com/question/13552918
#SPJ1
Answer:
The speed of the sound wave on the string is 545.78 m/s.
Explanation:
Given;
mass per unit length of the string, μ = 4.7 x 10⁻³ kg/m
tension of the string, T = 1400 N
The speed of the sound wave on the string is given by;

where;
v is the speed of the sound wave on the string
Substitute the given values and solve for speed,v,

Therefore, the speed of the sound wave on the string is 545.78 m/s.
Answer:
it is an 3d array of structure which involves inopperation methods
Explanation:
loollll