Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m
<span>The law of conservation of energy applies to a light bulb because the energy is being transformed into light and the light bulb is acting as a catalyst. The light bulb itself is not a form of energy, however when in combination with the electrical outlet to the bulb the electricity heats up the metal interior forming it into light. according to the law of conservation energy cannot be created or destroyed, but instead is formed into different kinds of energy. In relation to a light bulb electrical currents are forming heat energy by heating up the metal interior, then the bulb or glass around it allows to radiate light.</span>
Answer:
Option D is the correct answer.
Explanation:
Stress is the force per unit area that tend to change the shape of body.
Stress is defined as internal resistive force per unit area.


So, so stress distributed over an area is best described as internal resistive force.
Option D is the correct answer.
It traveled 200 m in 50 seconds. 200/50 can be simplified to 4 m/s!
The velocity is -4 m/s (negative because it travelled from 100 to -100 or backwards)