It is natural and u can't by it
I believe this a PV = nRT question whereas
you re write the formula and solve for volume
V = nRT/ P
then you input the values
P= pressure constant
V= x
n = moles = 0.2540
R = gas constant should be 8.314J mol
T = C degrees + 273.15 = K
solve for voume
make sure all units match
and use sig figs!!!!
Answer:
D. 5.6 g/cm^3
Explanation:
On the average seismic velocity increases with increase in depth due higher the pressure and more compaction
sand and shales in the Niger Delta Basin density–velocity relationship is
P = 0.31×V^0.25
A derivation of the original Gardner equation to calculate the average densities for sands and shales in wells.
ρ = α ×V^β
where
ρ = bulk density in g/cm3,
V = P-wave velocity,
α = 0.31 for V (m/s) and 0.23 for V(ft/s) and
β = 0.25.
Such that
ρ = 0.31 ×V^0.25
So the fastest seismic velocity will be in the densest material which is D. 5.6 g/cm3
Answer: The mass percentage of
is 5.86%
Explanation:
To calculate the mass percentage of
in the sample it is necessary to know the mass of the solute (
in this case), and the mass of the solution (pesticide sample, whose mass is explicit in the letter of the problem).
To calculate the mass of the solute, we must take the mass of the
precipitate. We can establish a relation between the mass of
and
using the stoichiometry of the compounds:

Since for every mole of Tl in
there are two moles of Tl in
, we have:

Using the molar mass of
we have:

Finally, we can use the mass percentage formula:

The balanced equation is
4Fe+3O₂⇒2Fe₂O₃
We know that the mole of Fe₂O₃ is 6, and since the ratio between oxygen and <span>Fe₂O₃ is 3:2, we can see that
3:2 = x:6 (3 oxygen moles can make 2 </span>Fe₂O₃ moles = x oxygen moles can make 6 <span>Fe₂O₃ moles)
</span><span>
Multiply outside and inside (3*6 , 2*x) and put them on opposing sides of the equation
2*x = 3*6
2x=18
x=9
Therefore 9 moles of oxygen is needed.
</span>