The equation relating length to width
L = 3W
The inequality stating the boundaries of the perimeter
LW <= 112
When you plug in what L equals in the first equation into the second equation, you get
3W * W <= 112
evaluate
3W^2 <= 112
3W <= 

W <= 

 cm
 
        
        
        
Step 1: Subtract -2 from both sides.<span><span><span><span>
m2</span>+<span>4m</span></span>−<span>(<span>−2</span>)</span></span>=<span><span>−2</span>−<span>(<span>−2</span>)</span></span></span><span><span><span><span>
m2</span>+<span>4m</span></span>+2</span>=0</span>
Step 2: Use quadratic formula with a=1, b=4, c=2.<span>
m=<span><span><span>−b</span>±<span>√<span><span>b2</span>−<span><span>4a</span>c</span></span></span></span><span>2a</span></span></span><span>
m=<span><span><span>−<span>(4)</span></span>±<span>√<span><span><span>(4)</span>2</span>−<span><span>4<span>(1)</span></span><span>(2)</span></span></span></span></span><span>2<span>(1)</span></span></span></span><span>
m=<span><span><span>−4</span>±<span>√8</span></span>2</span></span><span><span>
m=<span><span>−2</span>+<span><span><span>√2</span><span> or </span></span>m</span></span></span>=<span><span>−2</span>−<span>√2</span></span></span><span>
</span>
        
                    
             
        
        
        
First things first.. What type of triangle
If u are taking about a normal triangle here is some:
∠60+∠60+∠60
∠30+∠90+∠60
∠11+∠82+∠87
 
        
             
        
        
        
Circle = (x-h)^2 + (y-k)^2 = r^2
Center is (h,k) h = -5, k = 2
Radius is 4, r = 4
(x - -5)^2 + (y - 2)^2 = 4^2
(x + 5)^2 + (y - 2)^2 = 16
        
             
        
        
        
Answer:
A. 4
Step-by-step explanation:
80 ÷ 20 = 4.
There will be 4 red balloons for each green balloon