Answer:
A
Explanation:
The best method that will yield significantly more accurate result is to use spectrophotometer to read the turbidity of the sample and increase in turbidity is associated with increase biomass.
Answer:
Velocity of ball B after impact is
and ball A is ![0.711v_0](https://tex.z-dn.net/?f=0.711v_0)
Explanation:
= Initial velocity of ball A
![v_A=v_0\cos45^{\circ}](https://tex.z-dn.net/?f=v_A%3Dv_0%5Ccos45%5E%7B%5Ccirc%7D)
= Initial velocity of ball B = 0
= Final velocity of ball A
= Final velocity of ball B
= Coefficient of restitution = 0.8
From the conservation of momentum along the normal we have
![mv_A+mv_B=m(v_A)_n'+mv_B'\\\Rightarrow v_0\cos45^{\circ}+0=(v_A)_n'+v_B'\\\Rightarrow (v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0](https://tex.z-dn.net/?f=mv_A%2Bmv_B%3Dm%28v_A%29_n%27%2Bmv_B%27%5C%5C%5CRightarrow%20v_0%5Ccos45%5E%7B%5Ccirc%7D%2B0%3D%28v_A%29_n%27%2Bv_B%27%5C%5C%5CRightarrow%20%28v_A%29_n%27%2Bv_B%27%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7Dv_0)
Coefficient of restitution is given by
![e=\dfrac{v_B'-(v_A)_n'}{v_A-v_B}\\\Rightarrow 0.8=\dfrac{v_B'-(v_A)_n'}{v_0\cos45^{\circ}}\\\Rightarrow v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0](https://tex.z-dn.net/?f=e%3D%5Cdfrac%7Bv_B%27-%28v_A%29_n%27%7D%7Bv_A-v_B%7D%5C%5C%5CRightarrow%200.8%3D%5Cdfrac%7Bv_B%27-%28v_A%29_n%27%7D%7Bv_0%5Ccos45%5E%7B%5Ccirc%7D%7D%5C%5C%5CRightarrow%20v_B%27-%28v_A%29_n%27%3D%5Cdfrac%7B0.8%7D%7B%5Csqrt%7B2%7D%7Dv_0)
![(v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0](https://tex.z-dn.net/?f=%28v_A%29_n%27%2Bv_B%27%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7Dv_0)
![v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0](https://tex.z-dn.net/?f=v_B%27-%28v_A%29_n%27%3D%5Cdfrac%7B0.8%7D%7B%5Csqrt%7B2%7D%7Dv_0)
Adding the above two equations we get
![2v_B'=\dfrac{1.8}{\sqrt{2}}v_0\\\Rightarrow v_B'=\dfrac{0.9}{\sqrt{2}}v_0](https://tex.z-dn.net/?f=2v_B%27%3D%5Cdfrac%7B1.8%7D%7B%5Csqrt%7B2%7D%7Dv_0%5C%5C%5CRightarrow%20v_B%27%3D%5Cdfrac%7B0.9%7D%7B%5Csqrt%7B2%7D%7Dv_0)
![\boldsymbol{\therefore v_B'=0.6364v_0}](https://tex.z-dn.net/?f=%5Cboldsymbol%7B%5Ctherefore%20v_B%27%3D0.6364v_0%7D)
![(v_A)_n'=\dfrac{1}{\sqrt{2}}v_0-0.6364v_0\\\Rightarrow (v_A)_n'=0.07071v_0](https://tex.z-dn.net/?f=%28v_A%29_n%27%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7Dv_0-0.6364v_0%5C%5C%5CRightarrow%20%28v_A%29_n%27%3D0.07071v_0)
From the conservation of momentum along the plane of contact we have
![(v_A)_t'=(v_A)_t=v_0\sin45^{\circ}\\\Rightarrow (v_A)_t'=\dfrac{v_0}{\sqrt{2}}](https://tex.z-dn.net/?f=%28v_A%29_t%27%3D%28v_A%29_t%3Dv_0%5Csin45%5E%7B%5Ccirc%7D%5C%5C%5CRightarrow%20%28v_A%29_t%27%3D%5Cdfrac%7Bv_0%7D%7B%5Csqrt%7B2%7D%7D)
![v_A'=\sqrt{(v_A)_t'^2+(v_A)_n'^2}\\\Rightarrow v_A'=\sqrt{(\dfrac{v_0}{\sqrt{2}})^2+(0.07071v_0)^2}\\\Rightarrow \boldsymbol{v_A'=0.711v_0}](https://tex.z-dn.net/?f=v_A%27%3D%5Csqrt%7B%28v_A%29_t%27%5E2%2B%28v_A%29_n%27%5E2%7D%5C%5C%5CRightarrow%20v_A%27%3D%5Csqrt%7B%28%5Cdfrac%7Bv_0%7D%7B%5Csqrt%7B2%7D%7D%29%5E2%2B%280.07071v_0%29%5E2%7D%5C%5C%5CRightarrow%20%5Cboldsymbol%7Bv_A%27%3D0.711v_0%7D)
Velocity of ball B after impact is
and ball A is
.
Answer:
(B) dimensions, tolerances, materials, and finishes of a component.
Explanation:
An engineering drawing :
An engineering drawing is a technical drawing which draws the actual component .
An engineering drawing shows
1. Materials
2.Dimensions
3.Tolerance
4.Finishes of a component
Engineering drawing does not shows any information about the cost of component.
So the option B is correct.